ﻻ يوجد ملخص باللغة العربية
Quantum key distribution endows people with information-theoretical security in communications. Twin-field quantum key distribution (TF-QKD) has attracted considerable attention because of its outstanding key rates over long distances. Recently, several demonstrations of TF-QKD have been realized. Nevertheless, those experiments are implemented in the laboratory, remaining a critical question about whether the TF-QKD is feasible in real-world circumstances. Here, by adopting the sending-or-not-sending twin-field QKD (SNS-TF-QKD) with the method of actively odd parity pairing (AOPP), we demonstrate a field-test QKD over 428~km deployed commercial fiber and two users are physically separated by about 300~km in a straight line. To this end, we explicitly measure the relevant properties of the deployed fiber and develop a carefully designed system with high stability. The secure key rate we achieved breaks the absolute key rate limit of repeater-less QKD. The result provides a new distance record for the field test of both TF-QKD and all types of fiber-based QKD systems. Our work bridges the gap of QKD between laboratory demonstrations and practical applications, and paves the way for intercity QKD network with high-speed and measurement-device-independent security.
Twin field quantum key distribution promises high key rates at long distance to beat the rate distance limit. Here, applying the sending or not sending TF QKD protocol, we experimentally demonstrate a secure key distribution breaking the absolute key
Twin-field quantum key distribution (TF-QKD) and its variants can overcome the fundamental rate-distance limit of QKD which has been demonstrated in the laboratory and field while their physical implementations with side channels remains to be furthe
We study the sending-or-not-sending (SNS) protocol with discrete phase modulation of coherent states. We first make the security of the SNS protocol with discrete phase modulation. We then present analytic formulas for key rate calculation. We take n
Quantum Key Distribution is a quantum communication technique in which random numbers are encoded on quantum systems, usually photons, and sent from one party, Alice, to another, Bob. Using the data sent via the quantum signals, supplemented by class
The basic principle of quantum mechanics guarantee the unconditional security of quantum key distribution (QKD) at the cost of inability of amplification of quantum state. As a result, despite remarkable progress in worldwide metropolitan QKD network