ﻻ يوجد ملخص باللغة العربية
We report muon spin rotation (${mu}$SR) experiments together with first-principles calculations on microscopic properties of superconductivity in the kagome superconductor LaRu$_3$Si$_2$ with $T_{rm c}$ ${simeq}$ 7K. We find that the calculated normal state band structure features a kagome flat band and Dirac as well as van Hove points formed by the Ru-$dz^2$ orbitals near the Fermi level. Below $T_{rm c}$, ${mu}$SR reveals isotropic type-II superconductivity, which is robust against hydrostatic pressure up to 2 GPa. Intriguingly, the ratio 2$Delta/k_{rm B}T_{rm c}$ ${simeq}$ 4.3 (where ${Delta}$ is the superconducting energy gap) is in the strong coupling limit, and $T_{rm c}$/$lambda_{eff}^{-2}$ (where ${lambda}$ is the penetration depth) is comparable to that of high-temperature unconventional superconductors. We also find that electron-phonon coupling alone can only reproduce small fraction of $T_{rm c}$ from calculations, which suggests other factors in enhancing $T_{rm c}$ such as the correlation effect from the kagome flat band, the van Hove point on the kagome lattice, and high density of states from narrow kagome bands. Our experiments and calculations taken together point to strong coupling and the unconventional nature of kagome superconductivity in LaRu$_3$Si$_2$.
Superconductivity in LaRu$_3$Si$_2$ with the honeycomb structure of Ru atoms has been investigated. It is found that the normal state specific heat C/T exhibits a deviation from the Debye model down to the lowest temperature. A relation $C/T = gamma_
I study the lattice dynamics and electron-phonon coupling in non-centrosymmetric quasi-one-dimensional K$_2$Cr$_3$As$_3$ using density functional theory based first principles calculations. The phonon dispersions show stable phonons without any soft-
Coupling between $sigma$-bonding electrons and phonons is generally very strong. To metallize $sigma$-electrons provides a promising route to hunt for new high-T$_c$ superconductors. Based on this picture and first-principles density functional calcu
The recently discovered family of vanadium-based kagome metals with topological band structures offer a new opportunity to study frustrated, correlated and topological quantum states. These layered compounds are nonmagnetic and undergo charge density
Phonon measurements in the A15-type superconductors were complicated in the past because of the unavailability of large single crystals for inelastic neutron scattering, e.g., in the case of Nb$_3$Sn, or unfavorable neutron scattering properties in t