ﻻ يوجد ملخص باللغة العربية
We perform the three dimensional lattice simulation of the magnetic field and gravitational wave productions from bubble collisions during the first-order electroweak phase transition. Except that of the gravitational wave, the power-law spectrum of the magnetic field strength is numerically calculated for the first time, which is of a broken power-law spectrum: $B_{xi}propto f^{0.91}$ for low frequency region of $f<f_star$ and $B_{xi}propto f^{-1.65}$ for high frequency region of $f>f_star$ in the thin-wall limit, with the peak frequency being $f_starsim 5$ Hz at the phase transition temperature 100 GeV. When the hydrodynamics is taken into account, the generated magnetic field strength can reach $B_xisim 10^{-7}$G at a correlation length $xisim 10^{-7}$pc, which may seed the large scale magnetic fields. Our study shows that the measurements of cosmic magnetic field strength and gravitational waves are complementary to probe new physics admitting electroweak phase transition.
We study the magnetic fields generation from the cosmological first-order electroweak phase transition. We calculate the magnetic field induced by the variation of the Higgs phase for two bubbles and three bubbles collisions. Our study shows that ele
We discuss the observability of circular polarisation of the stochastic gravitational-wave background (SGWB) generated by helical turbulence following a first-order cosmological phase transition, using a model that incorporates the effects of both di
If dark matter (DM) acquires mass during a first order phase transition, there will be a filtering-out effect when DM enters the expanding bubble. In this paper we study the filtering-out effect for a pseudo-scalar DM, whose mass may partially come f
We study the generation of intergalactic magnetic fields in two models for first-order phase transitions in the early Universe that have been studied previously in connection with the generation of gravitational waves (GWs): the Standard Model supple
First order phase transitions in the early Universe generate gravitational waves, which may be observable in future space-based gravitational wave observatiories, e.g. the European eLISA satellite constellation. The gravitational waves provide an unp