ﻻ يوجد ملخص باللغة العربية
With the growing number and increasing availability of shared-use instruments and observatories, observational data is becoming an essential part of application workflows and contributor to scientific discoveries in a range of disciplines. However, the corresponding growth in the number of users accessing these facilities coupled with the expansion in the scale and variety of the data, is making it challenging for these facilities to ensure their data can be accessed, integrated, and analyzed in a timely manner, and is resulting significant demands on their cyberinfrastructure (CI). In this paper, we present the design of a push-based data delivery framework that leverages emerging in-network capabilities, along with data pre-fetching techniques based on a hybrid data management model. Specifically, we analyze data access traces for two large-scale observatories, Ocean Observatories Initiative (OOI) and Geodetic Facility for the Advancement of Geoscience (GAGE), to identify typical user access patterns and to develop a model that can be used for data pre-fetching. Furthermore, we evaluate our data pre-fetching model and the proposed framework using a simulation of the Virtual Data Collaboratory (VDC) platform that provides in-network data staging and processing capabilities. The results demonstrate that the ability of the framework to significantly improve data delivery performance and reduce network traffic at the observatories facilities.
The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows t
This chapter introduces the state-of-the-art in the emerging area of combining High Performance Computing (HPC) with Big Data Analysis. To understand the new area, the chapter first surveys the existing approaches to integrating HPC with Big Data. Ne
This paper describes the achievements of the H2020 project INDIGO-DataCloud. The project has provided e-infrastructures with tools, applications and cloud framework enhancements to manage the demanding requirements of scientific communities, either l
Academic advances of AI models in high-precision domains, like healthcare, need to be made explainable in order to enhance real-world adoption. Our past studies and ongoing interactions indicate that medical experts can use AI systems with greater tr
In 2018, NSF funded an effort to pilot a Cyberinfrastructure Center of Excellence (CI CoE or Center) that would serve the cyberinfrastructure (CI) needs of the NSF Major Facilities (MFs) and large projects with advanced CI architectures. The goal of