ترغب بنشر مسار تعليمي؟ اضغط هنا

Tips and Tricks for Webly-Supervised Fine-Grained Recognition: Learning from the WebFG 2020 Challenge

283   0   0.0 ( 0 )
 نشر من قبل Xiu-Shen Wei
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

WebFG 2020 is an international challenge hosted by Nanjing University of Science and Technology, University of Edinburgh, Nanjing University, The University of Adelaide, Waseda University, etc. This challenge mainly pays attention to the webly-supervised fine-grained recognition problem. In the literature, existing deep learning methods highly rely on large-scale and high-quality labeled training data, which poses a limitation to their practicability and scalability in real world applications. In particular, for fine-grained recognition, a visual task that requires professional knowledge for labeling, the cost of acquiring labeled training data is quite high. It causes extreme difficulties to obtain a large amount of high-quality training data. Therefore, utilizing free web data to train fine-grained recognition models has attracted increasing attentions from researchers in the fine-grained community. This challenge expects participants to develop webly-supervised fine-grained recognition methods, which leverages web images in training fine-grained recognition models to ease the extreme dependence of deep learning methods on large-scale manually labeled datasets and to enhance their practicability and scalability. In this technical report, we have pulled together the top WebFG 2020 solutions of total 54 competing teams, and discuss what methods worked best across the set of winning teams, and what surprisingly did not help.

قيم البحث

اقرأ أيضاً

Learning from the web can ease the extreme dependence of deep learning on large-scale manually labeled datasets. Especially for fine-grained recognition, which targets at distinguishing subordinate categories, it will significantly reduce the labelin g costs by leveraging free web data. Despite its significant practical and research value, the webly supervised fine-grained recognition problem is not extensively studied in the computer vision community, largely due to the lack of high-quality datasets. To fill this gap, in this paper we construct two new benchmark webly supervised fine-grained datasets, termed WebFG-496 and WebiNat-5089, respectively. In concretely, WebFG-496 consists of three sub-datasets containing a total of 53,339 web training images with 200 species of birds (Web-bird), 100 types of aircrafts (Web-aircraft), and 196 models of cars (Web-car). For WebiNat-5089, it contains 5089 sub-categories and more than 1.1 million web training images, which is the largest webly supervised fine-grained dataset ever. As a minor contribution, we also propose a novel webly supervised method (termed {Peer-learning}) for benchmarking these datasets.~Comprehensive experimental results and analyses on two new benchmark datasets demonstrate that the proposed method achieves superior performance over the competing baseline models and states-of-the-art. Our benchmark datasets and the source codes of Peer-learning have been made available at {url{https://github.com/NUST-Machine-Intelligence-Laboratory/weblyFG-dataset}}.
We introduce OmniSource, a novel framework for leveraging web data to train video recognition models. OmniSource overcomes the barriers between data formats, such as images, short videos, and long untrimmed videos for webly-supervised learning. First , data samples with multiple formats, curated by task-specific data collection and automatically filtered by a teacher model, are transformed into a unified form. Then a joint-training strategy is proposed to deal with the domain gaps between multiple data sources and formats in webly-supervised learning. Several good practices, including data balancing, resampling, and cross-dataset mixup are adopted in joint training. Experiments show that by utilizing data from multiple sources and formats, OmniSource is more data-efficient in training. With only 3.5M images and 800K minutes videos crawled from the internet without human labeling (less than 2% of prior works), our models learned with OmniSource improve Top-1 accuracy of 2D- and 3D-ConvNet baseline models by 3.0% and 3.9%, respectively, on the Kinetics-400 benchmark. With OmniSource, we establish new records with different pretraining strategies for video recognition. Our best models achieve 80.4%, 80.5%, and 83.6 Top-1 accuracies on the Kinetics-400 benchmark respectively for training-from-scratch, ImageNet pre-training and IG-65M pre-training.
96 - Di Wu , Siyuan Li , Zelin Zang 2021
Self-supervised contrastive learning has demonstrated great potential in learning visual representations. Despite their success on various downstream tasks such as image classification and object detection, self-supervised pre-training for fine-grain ed scenarios is not fully explored. In this paper, we first point out that current contrastive methods are prone to memorizing background/foreground texture and therefore have a limitation in localizing the foreground object. Analysis suggests that learning to extract discriminative texture information and localization are equally crucial for self-supervised pre-training under fine-grained scenarios. Based on our findings, we introduce Cross-view Saliency Alignment (CVSA), a contrastive learning framework that first crops and swaps saliency regions of images as a novel view generation and then guides the model to localize on the foreground object via a cross-view alignment loss. Extensive experiments on four popular fine-grained classification benchmarks show that CVSA significantly improves the learned representation.
In the following paper, we present and discuss challenging applications for fine-grained visual classification (FGVC): biodiversity and species analysis. We not only give details about two challenging new datasets suitable for computer vision researc h with up to 675 highly similar classes, but also present first results with localized features using convolutional neural networks (CNN). We conclude with a list of challenging new research directions in the area of visual classification for biodiversity research.
In this paper we address the task of recognizing assembly actions as a structure (e.g. a piece of furniture or a toy block tower) is built up from a set of primitive objects. Recognizing the full range of assembly actions requires perception at a lev el of spatial detail that has not been attempted in the action recognition literature to date. We extend the fine-grained activity recognition setting to address the task of assembly action recognition in its full generality by unifying assembly actions and kinematic structures within a single framework. We use this framework to develop a general method for recognizing assembly actions from observation sequences, along with observation features that take advantage of a spatial assemblys special structure. Finally, we evaluate our method empirically on two application-driven data sources: (1) An IKEA furniture-assembly dataset, and (2) A block-building dataset. On the first, our system recognizes assembly actions with an average framewise accuracy of 70% and an average normalized edit distance of 10%. On the second, which requires fine-grained geometric reasoning to distinguish between assemblies, our system attains an average normalized edit distance of 23% -- a relative improvement of 69% over prior work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا