ﻻ يوجد ملخص باللغة العربية
Flow transport in confined spaces is ubiquitous in technological processes, ranging from separation and purification of pharmaceutical ingredients by microporous membranes and drug delivery in biomedical treatment to chemical and biomass conversion in catalyst-packed reactors and carbon dioxide sequestration. In this work, we suggest a distinct pathway for enhanced liquid transport in a confined space via self-propelling microdroplets. These microdroplets can form spontaneously from localized liquid-liquid phase separation as a ternary mixture is diluted by a diffusing poor solvent. High speed images reveal how the microdroplets grow, break up and propel rapidly along the solid surface, with a maximal velocity up to ~160 um/s, in response to a sharp concentration gradient resulting from phase separation. The microdroplet self-propulsion induces a replenishing flow between the walls of the confined space towards the location of phase separation, which in turn drives the mixture out of equilibrium and leads to a repeating cascade of events. Our findings on the complex and rich phenomena of self-propelling droplets suggest an effective approach to enhanced flow motion of multicomponent liquid mixtures within confined spaces for time effective separation and smart transport processes.
Microcapsules are a key class of microscale materials with applications in areas ranging from personal care to biomedicine, and with increasing potential to act as extracellular matrix (ECM) models of hollow organs or tissues. Such capsules are conve
We study the thermodynamics of binary mixtures wherein the volume fraction of the minority component is less than the amount required to form a flat interface. Based on an explicit microscopic mean field theory, we show that the surface tension domin
The phase behavior of membrane proteins stems from a complex synergy with the amphiphilic molecules required for their solubilization. We show that ionization of a pH-sensitive surfactant, LDAO, bound to a bacterial photosynthetic protein, the Reacti
Liquid-liquid phase transition (LLPT) in supercooled water has been a long-standing controversial issue. We show simulation results of real stable first-order phase transitions between high and low density liquid (HDL and LDL)-like structures in conf
Employing X-ray photon correlation spectroscopy we measure the kinetics and dynamics of a pressure-induced liquid-liquid phase separation (LLPS) in a water-lysozyme solution. Scattering invariants and kinetic information provide evidence that the sys