ﻻ يوجد ملخص باللغة العربية
We present new LOFAR observations of the massive merging galaxy cluster MACS J0717.5+3745. The cluster hosts the most powerful radio halo known to date. These new observations, in combination with published uGMRT (300$-$850 MHz) and VLA (1$-$6.5 GHz) data, reveal that the halo is more extended than previously thought, with a largest linear size of $sim2.2 rm Mpc$. The halo shows a steep spectrum ($alpha_{144,text{MHz}}^{1.5,text{GHz}}sim-1.4$) and a steepening ($alpha_{1.5 text{GHz}}^{5.5 text{GHz}}sim-1.9$) above 1.5 GHz. We find a strong scattering in spectral index maps on scales of 50$-$100 kpc. We suggest that such a strong scattering may be a consequence of the regime where inverse Compton dominate the energy losses of electrons. The spectral index becomes steeper and shows an increased curvature in the outermost regions of the halo. We combined the radio data with textit{Chandra} observations to investigate the connection between the thermal and non-thermal components of the intracluster medium (ICM). Despite a significant substructure in the halo emission, the radio brightness correlates strongly with the X-ray brightness at all observed frequencies. The radio-versus-X-ray brightness correlation slope steepens at a higher radio frequency (from $b_{144 text{MHz}}=0.67pm0.05$ to $b_{3.0 text{GHz}}=0.98pm0.09$) and the spectral index shows a significant anti correlation with the X-ray brightness. Both pieces of evidence further support a spectral steepening in the external regions. The compelling evidence for a steep spectral index, the existence of a spectral break above 1.5 GHz, and the dependence of radio and X-ray surface brightness correlation on frequency are interpreted in the context of turbulent reacceleration models. Under this scenario, our results allowed us to constrain that the turbulent kinetic pressure of the ICM is up to 10%.
We present results from LOFAR and GMRT observations of the galaxy cluster MACS$,$J0717.5$+$3745. The cluster is undergoing a violent merger involving at least four sub-clusters, and it is known to host a radio halo. LOFAR observations reveal new sour
Radio relics are diffuse, extended synchrotron sources that originate from shock fronts generated during cluster mergers. The massive merging galaxy cluster MACS J0717.5+3745 hosts one of the more complex relics known to date. We present upgraded Gia
We report on high-resolution JVLA and Chandra observations of the HST Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and
We report our analysis of MACS J0717.5+3745 using 140 and 268 GHz Bolocam data collected at the Caltech Submillimeter Observatory. We detect extended Sunyaev-Zeldovich (SZ) effect signal at high significance in both Bolocam bands, and we employ Hersc
To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event,