ترغب بنشر مسار تعليمي؟ اضغط هنا

Distortion-Aware Linear Precoding for Massive MIMO Downlink Systems with Nonlinear Power Amplifiers

123   0   0.0 ( 0 )
 نشر من قبل Sina Rezaei Aghdam
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a framework for linear precoder design over a massive multiple-input multiple-output downlink system and in presence of nonlinear power amplifiers (PAs). By studying the spatial characteristics of the distortion, we demonstrate that conventional linear precoding techniques steer nonlinear distortions in the direction of the users. We show that, by taking into account PA nonlinearity characteristics, one can design linear precoders that reduce, and in single-user scenarios, even remove completely the distortion transmitted in the direction of the users. This, however, is achieved at the price of a considerably reduced array gain. To address this issue, we present precoder optimization algorithms which simultaneously take into account the effects of array gain, distortion, multiuser interference, and receiver noise. Specifically, we derive an expression for the achievable sum rate and propose an iterative algorithm that attempts to find the precoding matrix maximizing this expression. Moreover, using a model for PA power consumption, we propose an algorithm that attempts to find the precoding matrix minimizing the consumed power for a given minimum achievable sum rate. Our numerical results demonstrate that the proposed distortion-aware precoding techniques yield considerable improvements in terms of spectral and energy efficiency compared to conventional linear precoding techniques.



قيم البحث

اقرأ أيضاً

We address the problem of analyzing and classifying in groups the downlink channel environment in a millimeter-wavelength cell, accounting for path loss, multipath fading, and User Equipment (UE) blocking, by employing a hybrid propagation and multip ath fading model, thus using accurate inter-group interference modeling. The base station (BS) employs a large Uniform Planar Array (UPA) to facilitate massive Multiple-Input, Multiple-Output (MIMO) communications with high efficiency. UEs are equipped with a single antenna and are distributed uniformly within the cell. The key problem is analyzing and defining groups toward precoding. Because equitable type of throughput is desired between groups, Combined Frequency and Spatial Division and Multiplexing (CFSDM) prevails as necessary. We show that by employing three subcarrier frequencies, the UEs can be efficiently separated into high throughput groups, with each group employing Virtual Channel Model Beams (VCMB) based inner precoding, followed by efficient Multi-User Multiple-Input Multiple-Output (MU-MIMO) outer precoders. For each group, we study three different sub-grouping methods offering different advantages. We show that the improvement offered by Zero-Forcing Per-Group Precoding (ZF-PGP) over Zero-Forcing Precoding (ZFP) is very high.
110 - Han Yu , Xinping Yi , 2021
In this paper, we consider user selection and downlink precoding for an over-loaded single-cell massive multiple-input multiple-output (MIMO) system in frequency division duplexing (FDD) mode, where the base station is equipped with a dual-polarized uniform planar array (DP-UPA) and serves a large number of single-antenna users. Due to the absence of uplink-downlink channel reciprocity and the high-dimensionality of channel matrices, it is extremely challenging to design downlink precoders using closed-loop channel probing and feedback with limited spectrum resource. To address these issues, a novel methodology -- active channel sparsification (ACS) -- has been proposed recently in the literature for uniform linear array (ULA) to design sparsifying precoders, which boosts spectral efficiency for multi-user downlink transmission with substantially reduced channel feedback overhead. Pushing forward this line of research, we aim to facilitate the potential deployment of ACS in practical FDD massive MIMO systems, by extending it from ULA to DP-UPA with explicit user selection and making the current ACS implementation simplified. To this end, by leveraging Toeplitz structure of channel covariance matrices, we extend the original ACS using scale-weight bipartite graph representation to the matrix-weight counterpart. Building upon this, we propose a multi-dimensional ACS (MD-ACS) method, which is a generalization of original ACS formulation and is more suitable for DP-UPA antenna configurations. The nonlinear integer program formulation of MD-ACS can be classified as a generalized multi-assignment problem (GMAP), for which we propose a simple yet efficient greedy algorithm to solve it. Simulation results demonstrate the performance improvement of the proposed MD-ACS with greedy algorithm over the state-of-the-art methods based on the QuaDRiGa channel models.
We propose four hybrid combiner/precoder for downlink mmWave massive MU-MIMO systems. The design of a hybrid combiner/precoder is divided in two parts, analog and digital. The system baseband model shows that the signal processed by the mobile statio n can be interpreted as a received signal in the presence of colored Gaussian noise, therefore, since the digital part of the combiner and precoder do not have constraints for their generation, their designs can be based on any traditional signal processing that takes into account this kind of noise. To the best of our knowledge, this was not considered by previous works. A more realistic and appropriate design is described in this paper. Also, the approaches adopted in the literature for the designing of the combiner/precoder analog parts do not try to avoid or even reduce the inter user/symbol interference, they concentrate on increasing the signal-to-noise ratio (SNR). We propose a simple solution that decreases the interference while maintaining large SNR. In addition, one of the proposed hybrid combiners reaches the maximum value of our objective function according with the Hadamards inequality. Numerical results illustrate the BER performance improvements resulting from our proposals. In addition, a simple detection approach can be used for data estimation without significant performance loss.
Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (D AC) for each antenna and radio frequency (RF) chain in downlink transmission is used, which brings challenges for precoding design. To circumvent these obstacles, we develop a model-driven deep learning (DL) network for massive MU-MIMO with finite-alphabet precoding in this article. The architecture of the network is specially designed by unfolding an iterative algorithm. Compared with the traditional state-of-the-art techniques, the proposed DL-based precoder shows significant advantages in performance, complexity, and robustness to channel estimation error under Rayleigh fading channel.
93 - Shuang Qiu , Da Chen , Daiming Qu 2017
In this paper, the feasibility of a new downlink transmission mode in massive multi-input multi-output (MIMO) systems is investigated with two types of users, i.e., the users with only statistical channel state information (CSI) and the users with im perfect instantaneous CSI. The problem of downlink precoding design with mixed utilization of statistical and imperfect instantaneous CSI is addressed. We first theoretically analyze the impact of the mutual interference between the two types of users on their achievable rate. Then, considering the mutual interference suppression, we propose an extended zero-forcing (eZF) and an extended maximum ratio transmission (eMRT) precoding methods to minimize the total transmit power of base station and to maximize the received signal power of users, respectively. Thanks to the exploitation of statistical CSI, pilot-based channel estimation is avoided enabling more active users, higher system sum rate and shorter transmission delay. Finally, simulations are performed to validate the accuracy of the theoretical analysis and the advantages of the proposed precoding methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا