ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice dynamics and magnetic exchange interactions in GeCo2O4, a spinel with S = 1/2 pyrochlore lattice

91   0   0.0 ( 0 )
 نشر من قبل Sobhit Singh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GeCo$_2$O$_4$ is a unique system in the family of cobalt spinels ACo$_2$O$_4$ (A= Sn, Ti, Ru, Mn, Al, Zn, Fe, etc.) in which magnetic Co ions stabilize on the pyrochlore lattice exhibiting a large degree of orbital frustration. Due to the complexity of the low-temperature antiferromagnetic (AFM) ordering and long-range magnetic exchange interactions, the lattice dynamics and magnetic structure of GeCo$_2$O$_4$ spinel has remained puzzling. To address this issue, here we present theoretical and experimental investigations of the highly frustrated magnetic structure, and the infrared (IR) and Raman-active phonon modes in the spinel GeCo$_2$O$_4$, which exhibits an AFM ordering below the Neel temperature $T_N$ ~21 K, followed by a cubic ($Fd{bar 3}m$) to tetragonal ($I4_{1}/amd$) structural phase transition at $T_S$ ~16 K. Our density-functional theory (DFT+U) calculations reveal that one needs to consider magnetic-exchange interactions up to the third nearest neighbors to get an accurate description of the low-temperature AFM order in GeCo$_2$O$_4$. At room temperature three distinct IR-active modes ($T_{1u}$) are observed at frequencies 680, 413, and 325 cm$^{-1}$ along with four Raman-active modes $A_{1g}$, $T_{2g}(1)$, $T_{2g}(2)$, and $E_{g}$ at frequencies 760, 647, 550, and 308 cm$^{-1}$, respectively, which match reasonably well with our DFT+U calculated values. All the IR-active and Raman-active phonon modes exhibit signatures of moderate spin-phonon coupling. The temperature dependence of various parameters, such as the shift, width, and intensity, of the Raman-active modes, is also discussed. Noticeable changes around $T_N$ and $T_S$ are observed in the Raman line parameters of the $E_{g}$ and $T_{2g}$ modes, which are associated with the modulation of the Co-O bonds in CoO$_6$ octahedra during the excitations of these modes.

قيم البحث

اقرأ أيضاً

66 - J. Kalt , M. Sternik , B. Krause 2020
We determined the lattice dynamics of metastable, surface-stabilized $alpha$-phase FeSi$_2$ nanoislands epitaxially grown on the Si(111) surface with average heights and widths ranging from 1.5 to 20 nm and 18 to 72 nm, respectively. The crystallogra phic orientation, surface morphology and local crystal structure of the nanoislands were investigated by reflection high-energy electron diffraction, atomic force microscopy and X-ray absorption spectroscopy. The Fe-partial phonon density of states (PDOS), obtained by nuclear inelastic scattering, exhibits a pronounced damping and broadening of the spectral features with decreasing average island height. First-principles calculations of the polarization-projected Si- and Fe-partial phonon dispersions and PDOS enable the disentanglement of the contribution of the $xy$- and $z$-polarized phonons to the experimental PDOS. Modeling of the experimental data with the theoretical results unveils an enhanced damping of the $z$-polarized phonons for islands with average sizes below 10 nm. This phenomenon is attributed to the fact that the low-energy $z$-polarized phonons couple to the low-energy surface/interface vibrational modes. The thermodynamic and elastic properties obtained from the experimental data show a pronounced size-dependent behavior.
With decreasing temperature Sr$_2$VO$_4$ undergoes two structural phase transitions, tetragonal-to-orthorhombic-to-tetragonal, without long-range magnetic order. Recent experiments suggest, that only at very low temperature Sr$_{2}$VO$_{4}$ might ent er some, yet unknown, phase with long-range magnetic order, but without orthorhombic distortion. By combining relativistic density functional theory with an extended spin-1/2 compass-Heisenberg model we find an antiferromagnetic single-stripe ground state with highly competing exchange interactions, involving a non negligible inter-layer coupling, which places the system at the crossover between between the XY and Heisenberg picture. Most strikingly, we find a strong two-site spin-compass exchange anisotropy which is relieved by the orthorhombic distortion induced by the spin stripe order. Based on these results we discuss the origin of the hidden order phase and the possible formation of a spin-liquid at low temperatures.
Low-energy magnetic excitations in the spin-1/2 chain compound (C$_6$H$_9$N$_2$)CuCl$_3$ [known as (6MAP)CuCl$_3$] are probed by means of tunable-frequency electron spin resonance. Two modes with asymmetric (with respect to the $h u=gmu_B B$ line) fr equency-field dependences are resolved, illuminating the striking incompatibility with a simple uniform $S=frac{1}{2}$ Heisenberg chain model. The unusual ESR spectrum is explained in terms of the recently developed theory for spin-1/2 chains, suggesting the important role of next-nearest-neighbor interactions in this compound. Our conclusion is supported by model calculations for the magnetic susceptibility of (6MAP)CuCl$_3$, revealing a good qualitative agreement with experiment.
The adsorbed atoms exhibit tendency to occupy a triangular lattice formed by periodic potential of the underlying crystal surface. Such a lattice is formed by, e.g., a single layer of graphane or the graphite surfaces as well as (111) surface of face -cubic center crystals. In the present work, an extension of the lattice gas model to $S=1/2$ fermionic particles on the two-dimensional triangular (hexagonal) lattice is analyzed. In such a model, each lattice site can be occupied not by only one particle, but by two particles, which interact with each other by onsite $U$ and intersite $W_{1}$ and $W_{2}$ (nearest and next-nearest-neighbor, respectively) density-density interaction. The investigated hamiltonian has a form of the extended Hubbard model in the atomic limit (i.e., the zero-bandwidth limit). In the analysis of the phase diagrams and thermodynamic properties of this model with repulsive $W_{1}>0$, the variational approach is used, which treats the onsite interaction term exactly and the intersite interactions within the mean-field approximation. The ground state ($T=0$) diagram for $W_{2}leq0$ as well as finite temperature ($T>0$) phase diagrams for $W_{2}=0$ are presented. Two different types of charge order within $sqrt{3} times sqrt{3}$ unit cell can occur. At $T=0$, for $W_{2}=0$ phase separated states are degenerated with homogeneous phases (but $T>0$ removes this degeneration), whereas attractive $W_2<0$ stabilizes phase separation at incommensurate fillings. For $U/W_{1}<0$ and $U/W_{1}>1/2$ only the phase with two different concentrations occurs (together with two different phase separated states occurring), whereas for small repulsive $0<U/W_{1}<1/2$ the other ordered phase also appears (with tree different concentrations in sublattices). The qualitative differences with the model considered on hypercubic lattices are also discussed.
80 - Di Wang , Xiangyan Bo , Feng Tang 2018
Recently topological aspects of magnon band structure have attracted much interest, and especially, the Dirac magnons in Cu3TeO6 have been observed experimentally. In this work, we calculate the magnetic exchange interactions Js using the first-princ iples linear-response approach and find that these Js are short-range and negligible for the Cu-Cu atomic pair apart by longer than 7 Angstrom. Moreover there are only 5 sizable magnetic exchange interactions, and according to their signs and strengths, modest magnetic frustration is expected. Based on the obtained magnetic exchange couplings, we successfully reproduce the experimental spin-wave dispersions. The calculated neutron scattering cross section also agrees very well with the experiments. We also calculate Dzyaloshinskii-Moriya interactions (DMIs) and estimate the canting angle (about 1.3{deg}) of the magnetic non-collinearity based on the competition between DMIs and Js, which is consistent with the experiment. The small canting angle agrees with that the current experiments cannot distinguish the DMI induced nodal line from a Dirac point in the spin-wave spectrum. Finally we analytically prove that the sum rule conjectured in [Nat. Phys. 14, 1011 (2018)] holds but only up to the 11th nearest neighbour.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا