ﻻ يوجد ملخص باللغة العربية
Identifying the angular degrees $l$ of oscillation modes is essential for asteroseismology and depends on visual tagging before fitting power spectra in a so-called peakbagging analysis. In oscillating subgiants, radial ($l$= 0) mode frequencies distributed linearly in frequency, while non-radial ($l$ >= 1) modes are p-g mixed modes that having a complex distribution in frequency, which increased the difficulty of identifying $l$. In this study, we trained a 1D convolutional neural network to perform this task using smoothed oscillation spectra. By training simulation data and fine-tuning the pre-trained network, we achieved a 95 per cent accuracy on Kepler data.
We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background (CMB) using taken from July 2014 to December 2016 with the POLARBEAR experiment. The CMB power spectra are measured using observations at 150 GHz
Oscillation modes in fast-rotating stars can be split into several subclasses, each with their own properties. To date, seismology of these stars cannot rely on regular pattern analysis and scaling relations. However, recently there has been the prom
Modern detectors of cosmic gamma-rays are a special type of imaging telescopes (air Cherenkov telescopes) supplied with cameras with a relatively large number of photomultiplier-based pixels. For example, the camera of the TAIGA-IACT telescope has 56
The existence of mixed modes in stars is a marker of stellar evolution. Their detection serves for a better determination of stellar age. The goal of this paper is to identify the dipole modes in an automatic manner without human intervention. I use