ﻻ يوجد ملخص باللغة العربية
The distribution of the gas velocity dispersion sigma across the images of 1146 MaNGA galaxies is analyzed. We find that there are two types of distribution of the gas velocity dispersion across the images of galaxies: (i) the distributions of 909 galaxies show a radial symmetry with or without the sigma enhancement at the center (R distribution) and (ii) distributions with a band of enhanced sigma along the minor axis in the images of 159 galaxies with or without the sigma enhancement at the center (B distribution) The sigma distribution across the images of 78 galaxies cannot be reliable classified. We select 806 galaxies with the best defined characteristics (this sample includes 687 galaxies with R distribution and 119 galaxies with B distribution) and compare the properties of galaxies with R and B distributions. We find that the median value of the gas velocity dispersion sigma_m in galaxies with B distribution is higher by around 5 km/s, on average, than that of galaxies with R distribution. The optical radius R_25 of galaxies with B distribution is lower by around 0.1 dex, on average, than that of galaxies with similar masses with R distribution. Thus the properties of a galaxy are related to the type of distribution of the gas velocity dispersion across its image. This suggests that the presence of the band of the enhanced gas velocity dispersion can be an indicator of a specific evolution (or a specific stage in the evolution) of a galaxy.
Off-centered spots of the enhanced gas velocity dispersion, s, are revealed in some galaxies from the MaNGA survey. Aiming to clarify the origin of the spots of enhanced s, we examine the distributions of the surface brightness, the line-of-sight vel
We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more tha
We determine the local metallicity of the ionized gas for more than $9.2times 10^5$ star forming regions (spaxels) located in 1023 nearby galaxies included in the SDSS-IV MaNGA IFU survey. We use the dust extinction derived from the Balmer decrement
We analyze the intrinsic velocity dispersion properties of 648 star-forming galaxies observed by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, to explore the relation of intrinsic gas velocity dispersions with star formation
In order to study the state of gas in galaxies, diagrams of the relation of optical emission line fluxes are used allowing one to separate main ionization sources: young stars in the H II regions, active galactic nuclei, and shock waves. In the inter