ﻻ يوجد ملخص باللغة العربية
We present results for the 2-jettiness differential distribution for boosted top quark pairs produced in $e^+e^-$ collisions in the peak region accounting for QCD large-logarithm resummation at next-to-next-to-next-to-leading logarithmic (N$^3$LL) order and fixed-order corrections to matrix elements at next-to-next-to-leading order (NNLO) calculated in the framework of soft-collinear effective theory and boosted heavy quark effective theory. Electroweak and finite-width effects are included at leading order. We study the perturbative convergence of the cross section in the pole and MSR mass schemes, with and without soft gap subtractions. We find that there is a partial cancellation between the pole mass and soft function renormalons. When renormalon subtractions concerning the top mass and the soft function are implemented, the perturbative uncertainties are, however, systematically smaller and an improvement in the stability of the peak position is observed. We find that the top MSR mass may be determined with perturbative uncertainties well below $100$,MeV from the peak position of the 2-jettiness distribution. This result has important applications for Monte Carlo top quark mass calibrations.
We consider top-quarks produced at large energy in e+e- collisions, and address the question of what top-mass can be measured from reconstruction. The production process is characterized by well separated scales: the center-of-mass energy, Q, the top
We consider Drell-Yan production $ppto V^* X to L X$ at small $q_T ll Q$. Experimental measurements require fiducial cuts on the leptonic state $L$, which introduce enhanced, linear power corrections in $q_T/Q$. We show that they can be unambiguously
We present a framework for $q_T$ resummation at N$^3$LL+NNLO accuracy for arbitrary color-singlet processes based on a factorization theorem in SCET. Our implementation CuTe-MCFM is fully differential in the Born kinematics and matches to large-$q_T$
We study jet substructures of a boosted polarized top quark, which undergoes the semileptonic decay $tto bell u$, in the perturbative QCD framework. The jet mass distribution (energy profile) is factorized into the convolution of a hard top-quark dec
We analyse the semileptonic decay of a polarised top-quark with a large velocity based on the perturbative QCD factorisation framework. Thanks to the factorisation and the spin decomposition, the production part and the decay part can be factorised a