ترغب بنشر مسار تعليمي؟ اضغط هنا

The Measurement Process in Relational Quantum Mechanics

175   0   0.0 ( 0 )
 نشر من قبل Byron K. Jennings
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B.K. Jennings




اسأل ChatGPT حول البحث

Understanding the quantum measurement problem is closely associated with understanding wave function collapse. Motivated by Breuers claim that it is impossible for an observer to distinguish all states of a system in which it is contained, wave function collapse is tied to self observation in the Schmidt biorthonormal decomposition of entangled systems. This approach provides quantum mechanics in general and relational quantum mechanics in particular with a clean, well motivated explanation of the measurement process and wave function collapse.



قيم البحث

اقرأ أيضاً

113 - B.K. Jennings 2020
A modified version of relational quantum mechanics is developed based on the three following ideas. An observer can develop an internally consistent description of the universe but it will, of necessity, differ in particulars from the description dev eloped by any other observer. The state vector is epistomological and relative to a given quantum system as in the original relational quantum mechanics. If two quantum systems are entangled, they will observe themselves to be in just one of the many states in the Schmidt biorthonormal decomposition and not in a linear combination of many.
We show that quantum mechanics is the first theory in human history that violates the basic a priori principles that have shaped human thought since immemorial times. Therefore although it is more contrary to magic than any body of knowledge could be , what could be called its magic precisely resides in this violation.
101 - R. Muci~no , E. Okon , D. Sudarsky 2021
Relational Quantum Mechanics (RQM) is a non-standard interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve t he conceptual problems of standard quantum mechanics. Moreover, RQM has been argued to account for all quantum correlations without invoking non-local effects and, in spite of embracing a fully relational stance, to successfully explain how different observers exchange information. In this work, we carry out a thorough assessment of RQM and its purported achievements. We find that it fails to address the conceptual problems of standard quantum mechanics, and that it leads to serious conceptual problems of its own. We also uncover as unwarranted the claims that RQM can correctly explain information exchange among observers, and that it accommodates all quantum correlations without invoking non-local influences. We conclude that RQM is unsuccessful in its attempt to provide a satisfactory understanding of the quantum world.
Bell suggested that a new perspective on quantum mechanics was needed. We propose a solution of the measurement problem based on a reconsideration of the nature of particles. The solution is presented with an idealized model involving non-locality or non-separability, identified in 1927 by Einstein and implicit in the standard interpretation of single slit (or hole) diffraction. Considering particles as being localizable entities leads to an `induced collapse model, a parameter-free alternative to spontaneous collapse models, that affords a new perspective on, emph{inter alia}, nuclear decay.
115 - Jean Bricmont 2017
The goal of this paper is to explain how the views of Albert Einstein, John Bell and others, about nonlocality and the conceptual issues raised by quantum mechanics, have been rather systematically misunderstood by the majority of physicists.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا