ﻻ يوجد ملخص باللغة العربية
The probability and intensity of nuclear reactions involving neutrons are characterized by the corresponding reaction cross-sections which are known to depend strongly on the incident neutron energy. In real applications the neutrons are seldom or never monoenergetic, and are usually characterized by certain continuous energy spectrum. The detailed knowledge of the neutron spectrum is crucial for numerous applications such as the nuclear reactor operation, the traveling wave reactor (TWR) development, including the search of the neutron energy ranges suitable for the wave nuclear burning, the search and prediction of the so-called blowup modes in neutron-multiplying media, the verification of neutron moderation theories and so on. In this paper we describe a method of GEANT4-based Monte Carlo calculation of the neutron spectrum evolution as well as the steady-state neutron spectrum in a system containing a persistent neutron source.
A test of Geant4 simulation of electron backscattering recently published in this journal prompted further investigation into the causes of the observed behaviour. An interplay between features of geometry and physics algorithms implemented in Geant4
Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation o
Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is ext
Evolutions of Geant4 code have affected the simulation of electron backscattering with respect to previously published results. Their effects are quantified by analyzing the compatibility of the simulated electron backscattering fraction with a large
Particle induced X-ray emission (PIXE) is an important physical effect that is not yet adequately modelled in Geant4. This paper provides a critical analysis of the problem domain associated with PIXE simulation and describes a set of software develo