ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the Magnetic and Electronic Properties of Strontium Titanate by Carbon Doping

149   0   0.0 ( 0 )
 نشر من قبل Hui-Qiong Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that the structural stability, electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C-C dimer pair accompanied by stronger C-C and weaker C-Ti hybridizations as the C-C distance becomes smaller. As the C-C distance increases, C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.



قيم البحث

اقرأ أيضاً

We report on the magnetic, resistive, and structural studies of perovskite La$_{1/3}$Sr$_{2/3}$CoO$_{3-delta}$. By using the relation of synthesis temperature and oxygen partial pressure to oxygen stoichiometry obtained from thermogravimetric analysi s, we have synthesized a series of samples with precisely controlled $delta=0.00-0.49$. These samples show three structural phases at $delta=0.00-0.15$, $approx0.25$, $approx0.5$, and two-phase behavior for other oxygen contents. The stoichiometric material with $delta=0.00$ is a cubic ferromagnetic metal with the Curie temperature $T_{rm C}=274$ K. The increase of $delta$ to 0.15 is followed by a linear decrease of $T_{rm C}$ to $approx$ 160 K and a metal-insulator transition near the boundary of the cubic structure range. Further increase of $delta$ results in formation of a tetragonal $2a_ptimes 2a_p times 4a_p$ phase for $deltaapprox 0.25$ and a brownmillerite phase for $deltaapprox0.5$. At low temperatures, these are weak ferromagnetic insulators (canted antiferromagnets) with magnetic transitions at $T_{rm m}approx230$ and 120 K, respectively. At higher temperatures, the $2a_ptimes 2a_p times 4a_p$ phase is $G$-type antiferromagnetic between 230 K and $approx$360 K. Low temperature magnetic properties of this system for $delta<1/3$ can be described in terms of a mixture of Co$^{3+}$ ions in the low-spin state and Co$^{4+}$ ions in the intermediate-spin state and a possible spin transition of Co$^{3+}$ to the intermediate-spin state above $T_{rm C}$. For $delta>1/3$, there appears to be a combination of Co$^{2+}$ and Co$^{3+}$ ions, both in the high-spin state with dominating antiferromagnetic interactions.
305 - Yong Su Kim , J. Kim , S. J. Moon 2008
Several defect configurations including oxygen vacancies have been investigated as possible origins of the reported room-temperature ferroelectricity of strontium titanate (STO) thin films [Appl. Phys. Letts. 91, 042908 (2007)]. First-principles calc ulations revealed that the Sr-O-O vacancy complexes create deep localized states in the band gap of SrTiO3 without affecting its insulating property. These results are in agreement with electronic structural changes determined from optical transmission and X-ray absorption measurements. This work opens the way to exploiting oxygen vacancies and their complexes as a source of ferroelectricity in perovskite oxide thin films, including STO.
Monodispersed strontium titanate nanoparticles were prepared and studied in detail. It is found that ~10 nm as-prepared stoichiometric nanoparticles are in a polar structural state (with possibly ferroelectric properties) over a broad temperature ran ge. A tetragonal structure, with possible reduction of the electronic hybridization is found as the particle size is reduced. In the 10 nm particles, no change in the local Ti-off centering is seen between 20 and 300 K. The results indicate that nanoscale motifs of SrTiO3 may be utilized in data storage as assembled nano-particle arrays in applications where chemical stability, temperature stability and low toxicity are critical issues.
Combining experiments with first principles calculations, we show that site-specific doping of Mn into SrTiO3 has a decisive influence on the dielectric properties of these doped systems. We find that phonon contributions to the dielectric constant i nvariably decrease sharply on doping at any site. However, a sizable, random dipolar contribution only for Mn at the Sr site arises from a strong off-centric displacement of Mn in spite of Mn being in a non-d0 state; this leads to a large dielectric constant at higher temperatures and gives rise to a relaxor ferroelectric behavior at lower temperatures. We also investigate magnetic properties in detail and critically reevaluate the possibility of a true multi-glass state in such systems.
The bandgap energy values for the ferroelectric BaTiO3-based solid solutions with isovalent substitution Ba1-x SrxTiO3, BaZrxTi1-xO3 and BaSnxTi1-xO3 were determined using diffuse reflectance spectra. While the corresponding unit cell volume follows Vegards law in accordance with the different ionic radii of the ionic substitutions, the bandgap values depict non-linear compositional dependences for all the solid solutions. The effect is considerably large for BaZrxTi1-xO3 and BaSnxTi1-xO3 solutions, depicting a bandgap linear compositional dependence up to x=0.6, for x>0.6 BaZrxTi1-xO3 compounds present much larger bandgap values than BaSnxTi1-xO3 counterparts. Electronic properties have been investigated through X-ray photoelectron spectroscopy in BaSnxTi1-xO3 compounds, indicating that the Sn 3d and Ti 2p core levels shift against the Ba 3d ones within the whole compositional range with the same energy trend as that observed for the optical bandgap. Since for Ba1-x SrxTiO3 compounds no major bandgap variation is observed, we conclude that the bandgap compositional dependences observed for BaSnxTi1-xO3 compounds and BaZrxTi1-xO3 ones are originated from the structural sensitivity of the O, Ti and Sn or Zr electronic bands involved in the bandgap transition of these compounds. With this work, we underline the reliability of the bandgap determined from diffuse reflectance spectrometry experiments, as a means to non-invasively evaluate the electronic properties of powder materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا