ﻻ يوجد ملخص باللغة العربية
So far most of the analysis of coronavirus 2020 epidemic data has been focusing on a short-time window and consequently a quantitative test of statistical physical laws of Coronavirus Epidemics with Containment Measures (CEwCM) is currently lacking. Here we report a quantitative analysis of CEwCM over 230 days, covering the full-time lapse of the first epidemic wave. We use a 3D phase diagram tracking the simultaneous evolution of the doubling time Td(t) and reproductive number Rt(t) showing that this expanded parameter space is needed for biological physics of CEwCP. We have verified that in the supercritical [Rt(t)>1, Td(t)<40 days] regime i) the curve Z(t) of total infected cases follows the growth rate called Ostwald law; ii) the doubling time follows the exponential law Td(t)=A exp((t-t0)/s) as a function of time and iii) the power law Td(t)=C(Rt(t)-1)^-n is verified with the exponent n depending on the definition of Rt(t). The log-log plots Td(t) versus (Rt-1) of the second 2020 epidemic wave unveil in the subcritical regime [Td(t)>100 days] arrested metastable phases with Rt>1 where Td(t) was kept constant followed by its explosion and its containment following the same power law as in the first wave
Understanding and predicting outbreaks of contagious diseases are crucial to the development of society and public health, especially for underdeveloped countries. However, challenging problems are encountered because of complex epidemic spreading dy
Macroscopic growth laws, solutions of mean field equations, describe in an effective way an underlying complex dynamics. They are applied to study the spreading of infections, as in the case of CoviD-19, where the counting of the cumulated number $N(
The control of Covid 19 epidemics by public health policy in Italy during the first and the second epidemic waves has been driven by using reproductive number Rt(t) to identify the supercritical (percolative), the subcritical (arrested), separated by
The COVID-19 pandemic has challenged authorities at different levels of government administration around the globe. When faced with diseases of this severity, it is useful for the authorities to have prediction tools to estimate in advance the impact
Mathematical disease modelling has long operated under the assumption that any one infectious disease is caused by one transmissible pathogen spreading among a population. This paradigm has been useful in simplifying the biological reality of epidemi