ﻻ يوجد ملخص باللغة العربية
In this paper we study the soliton dynamics of a high-density Bose-Einstein condensate (BEC) subject to a time-oscillating trap. The behavior of the BEC is described with a modified Gross-Pitaevskii equation (mGPE) which takes into account three-body losses, atomic feeding and quantum fluctuations (up to a novel high-density term). A variational approximation (VA) is used to study the behavior of a Gaussian pulse in a static double-well potential. Direct numerical solutions of the mGPE corroborate that the center of the pulse exhibits an oscillatory behavior (as the VA predicts), and show a novel phenomenon of fragmentation and regeneration (FR). It is shown that this FR process is destroyed if we consider a potential with a time-dependent quadratic term, but the FR survives if the time dependence is introduced in a cubic term. Comparison between the VA and the numerical solution revealed an excellent agreement when the oscillations of the pulse remain in one of the potential wells. The effects of the quantum fluctuating terms on the FR process are studied. Finally, variational results using a supergaussian trial function are obtained.
We investigate the internal dynamics of the spinor Bose-Einstein Condensates subject to dissipation by solving the Lindblad master equation. It is shown that for the condensates without dissipation its dynamics always evolve along specific orbital in
We study the dynamic behavior of a Bose-Einstein condensate (BEC) containing a dark soliton separately reflected from potential drops and potential barriers. It is shown that for a rapidly varying potential and in a certain regime of incident velocit
The aim of this paper is to perform a numerical and analytical study of a rotating Bose Einstein condensate placed in a harmonic plus Gaussian trap, following the experiments of cite{bssd}. The rotational frequency $Omega$ has to stay below the trapp
We investigate the collective excitations of a one-dimensional Bose-Einstein condensate (BEC) with repulsive interaction between atoms in a quadratic plus quartic trap. By using the variational approach, the coupled equations of motion for the center
We demonstrate a two-dimensional atom interferometer in a harmonic magnetic waveguide using a Bose-Einstein condensate. Such an interferometer could measure rotation using the Sagnac effect. Compared to free space interferometers, larger interactions