ﻻ يوجد ملخص باللغة العربية
Over the last two decades, the research activities on magnetocalorics have been exponentially increased leading to the discovery of a wide category of materials including intermetallics and oxides. Even though the reported materials were found to show excellent magnetocaloric properties on laboratory scale, only a restricted family among them could be upscaled toward industrial levels and implemented as refrigerants in magnetic cooling devices. On the other hand, in the most of reported reviews, the magnetocaloric materials are usually discussed in terms of their adiabatic temperature and entropy changes, which is not enough to get more insight about their large scale applicability. In this review, not only the fundamental properties of recently reported magnetocaloric materials are discussed but also their thermodynamic performance in functional devices. The reviewed families particularly include Gd1-xRx alloys, LaFe13-xSix, MnFeP1-xAsx and R1-xAxMnO3 based compounds. Other relevant practical aspects such as mechanical stability, synthesis and corrosion issues are discussed. In addition, the intrinsic and extrinsic parameters that play a crucial role in the control of magnetic and magnetocaloric properties are regarded. In order to reproduce the needed magnetocaloric parameters, some practical models are proposed. Finally, the concepts of the rotating magnetocaloric effect and multilayered magnetocalorics are introduced.
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-bo
Synthesis of advanced inorganic materials with minimum number of trials is of paramount importance towards the acceleration of inorganic materials development. The enormous complexity involved in existing multi-variable synthesis methods leads to hig
We have formulated a relaxation mechanism for ferrites and ferromagnetic metals whereby the coupling between the magnetic motion and lattice is based purely on continuum arguments concerning magnetostriction. This theoretical approach contrasts with
Recent research in materials science opens exciting perspectives to design novel quantum materials and devices, but it calls for quantitative predictions of properties which are not accessible in standard first principles packages. PAOFLOW is a softw
We present a Mathematica program package MagneticTB, which can generate the tight-binding model for arbitrary magnetic space group. The only input parameters in MagneticTB are the (magnetic) space group number and the orbital information in each Wyck