ترغب بنشر مسار تعليمي؟ اضغط هنا

Dilated-Scale-Aware Attention ConvNet For Multi-Class Object Counting

280   0   0.0 ( 0 )
 نشر من قبل Wei Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object counting aims to estimate the number of objects in images. The leading counting approaches focus on the single category counting task and achieve impressive performance. Note that there are multiple categories of objects in real scenes. Multi-class object counting expands the scope of application of object counting task. The multi-target detection task can achieve multi-class object counting in some scenarios. However, it requires the dataset annotated with bounding boxes. Compared with the point annotations in mainstream object counting issues, the coordinate box-level annotations are more difficult to obtain. In this paper, we propose a simple yet efficient counting network based on point-level annotations. Specifically, we first change the traditional output channel from one to the number of categories to achieve multiclass counting. Since all categories of objects use the same feature extractor in our proposed framework, their features will interfere mutually in the shared feature space. We further design a multi-mask structure to suppress harmful interaction among objects. Extensive experiments on the challenging benchmarks illustrate that the proposed method achieves state-of-the-art counting performance.



قيم البحث

اقرأ أيضاً

Crowd counting, i.e., estimating the number of people in a crowded area, has attracted much interest in the research community. Although many attempts have been reported, crowd counting remains an open real-world problem due to the vast scale variati ons in crowd density within the interested area, and severe occlusion among the crowd. In this paper, we propose a novel Pyramid Density-Aware Attention-based network, abbreviated as PDANet, that leverages the attention, pyramid scale feature and two branch decoder modules for density-aware crowd counting. The PDANet utilizes these modules to extract different scale features, focus on the relevant information, and suppress the misleading ones. We also address the variation of crowdedness levels among different images with an exclusive Density-Aware Decoder (DAD). For this purpose, a classifier evaluates the density level of the input features and then passes them to the corresponding high and low crowded DAD modules. Finally, we generate an overall density map by considering the summation of low and high crowded density maps as spatial attention. Meanwhile, we employ two losses to create a precise density map for the input scene. Extensive evaluations conducted on the challenging benchmark datasets well demonstrate the superior performance of the proposed PDANet in terms of the accuracy of counting and generated density maps over the well-known state of the arts.
Object detection and counting are related but challenging problems, especially for drone based scenes with small objects and cluttered background. In this paper, we propose a new Guided Attention Network (GANet) to deal with both object detection and counting tasks based on the feature pyramid. Different from the previous methods relying on unsupervised attention modules, we fuse different scales of feature maps by using the proposed weakly-supervised Background Attention (BA) between the background and objects for more semantic feature representation. Then, the Foreground Attention (FA) module is developed to consider both global and local appearance of the object to facilitate accurate localization. Moreover, the new data argumentation strategy is designed to train a robust model in various complex scenes. Extensive experiments on three challenging benchmarks (i.e., UAVDT, CARPK and PUCPR+) show the state-of-the-art detection and counting performance of the proposed method compared with existing methods.
In this paper, we propose two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous spatial pyramid pooling (ASPP) and context-aware module (CAN). The encoder of M-SFANet is enhanced with ASPP containing parallel atrous convolutional layers with different sampling rates and hence able to extract multi-scale features of the target object and incorporate larger context. To further deal with scale variation throughout an input image, we leverage the CAN module which adaptively encodes the scales of the contextual information. The combination yields an effective model for counting in both dense and sparse crowd scenes. Based on the SFANet decoder structure, M-SFANets decoder has dual paths, for density map and attention map generation. The second model is called M-SegNet, which is produced by replacing the bilinear upsampling in SFANet with max unpooling that is used in SegNet. This change provides a faster model while providing competitive counting performance. Designed for high-speed surveillance applications, M-SegNet has no additional multi-scale-aware module in order to not increase the complexity. Both models are encoder-decoder based architectures and are end-to-end trainable. We conduct extensive experiments on five crowd counting datasets and one vehicle counting dataset to show that these modifications yield algorithms that could improve state-of-the-art crowd counting methods. Codes are available at https://github.com/Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting.
Scale variation is one of the key challenges in object detection. In this work, we first present a controlled experiment to investigate the effect of receptive fields for scale variation in object detection. Based on the findings from the exploration experiments, we propose a novel Trident Network (TridentNet) aiming to generate scale-specific feature maps with a uniform representational power. We construct a parallel multi-branch architecture in which each branch shares the same transformation parameters but with different receptive fields. Then, we adopt a scale-aware training scheme to specialize each branch by sampling object instances of proper scales for training. As a bonus, a fast approximation version of TridentNet could achieve significant improvements without any additional parameters and computational cost compared with the vanilla detector. On the COCO dataset, our TridentNet with ResNet-101 backbone achieves state-of-the-art single-model results of 48.4 mAP. Codes are available at https://git.io/fj5vR.
We propose Scale-aware AutoAug to learn data augmentation policies for object detection. We define a new scale-aware search space, where both image- and box-level augmentations are designed for maintaining scale invariance. Upon this search space, we propose a new search metric, termed Pareto Scale Balance, to facilitate search with high efficiency. In experiments, Scale-aware AutoAug yields significant and consistent improvement on various object detectors (e.g., RetinaNet, Faster R-CNN, Mask R-CNN, and FCOS), even compared with strong multi-scale training baselines. Our searched augmentation policies are transferable to other datasets and box-level tasks beyond object detection (e.g., instance segmentation and keypoint estimation) to improve performance. The search cost is much less than previous automated augmentation approaches for object detection. It is notable that our searched policies have meaningful patterns, which intuitively provide valuable insight for human data augmentation design. Code and models will be available at https://github.com/Jia-Research-Lab/SA-AutoAug.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا