ﻻ يوجد ملخص باللغة العربية
Object counting aims to estimate the number of objects in images. The leading counting approaches focus on the single category counting task and achieve impressive performance. Note that there are multiple categories of objects in real scenes. Multi-class object counting expands the scope of application of object counting task. The multi-target detection task can achieve multi-class object counting in some scenarios. However, it requires the dataset annotated with bounding boxes. Compared with the point annotations in mainstream object counting issues, the coordinate box-level annotations are more difficult to obtain. In this paper, we propose a simple yet efficient counting network based on point-level annotations. Specifically, we first change the traditional output channel from one to the number of categories to achieve multiclass counting. Since all categories of objects use the same feature extractor in our proposed framework, their features will interfere mutually in the shared feature space. We further design a multi-mask structure to suppress harmful interaction among objects. Extensive experiments on the challenging benchmarks illustrate that the proposed method achieves state-of-the-art counting performance.
Crowd counting, i.e., estimating the number of people in a crowded area, has attracted much interest in the research community. Although many attempts have been reported, crowd counting remains an open real-world problem due to the vast scale variati
Object detection and counting are related but challenging problems, especially for drone based scenes with small objects and cluttered background. In this paper, we propose a new Guided Attention Network (GANet) to deal with both object detection and
In this paper, we propose two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous
Scale variation is one of the key challenges in object detection. In this work, we first present a controlled experiment to investigate the effect of receptive fields for scale variation in object detection. Based on the findings from the exploration
We propose Scale-aware AutoAug to learn data augmentation policies for object detection. We define a new scale-aware search space, where both image- and box-level augmentations are designed for maintaining scale invariance. Upon this search space, we