ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data Augmentation

88   0   0.0 ( 0 )
 نشر من قبل Feixiang Lu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Holistically understanding an object and its 3D movable parts through visual perception models is essential for enabling an autonomous agent to interact with the world. For autonomous driving, the dynamics and states of vehicle parts such as doors, the trunk, and the bonnet can provide meaningful semantic information and interaction states, which are essential to ensuring the safety of the self-driving vehicle. Existing visual perception models mainly focus on coarse parsing such as object bounding box detection or pose estimation and rarely tackle these situations. In this paper, we address this important autonomous driving problem by solving three critical issues. First, to deal with data scarcity, we propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images before reconstructing human-vehicle interaction (VHI) scenarios. Our approach is fully automatic without any human interaction, which can generate a large number of vehicles in uncommon states (VUS) for training deep neural networks (DNNs). Second, to perform fine-grained vehicle perception, we present a multi-task network for VUS parsing and a multi-stream network for VHI parsing. Third, to quantitatively evaluate the effectiveness of our data augmentation approach, we build the first VUS dataset in real traffic scenarios (e.g., getting on/out or placing/removing luggage). Experimental results show that our approach advances other baseline methods in 2D detection and instance segmentation by a big margin (over 8%). In addition, our network yields large improvements in discovering and understanding these uncommon cases. Moreover, we have released the source code, the dataset, and the trained model on Github (https://github.com/zongdai/EditingForDNN).

قيم البحث

اقرأ أيضاً

While the fine-grained visual categorization (FGVC) problems have been greatly developed in the past years, the Ultra-fine-grained visual categorization (Ultra-FGVC) problems have been understudied. FGVC aims at classifying objects from the same spec ies (very similar categories), while the Ultra-FGVC targets at more challenging problems of classifying images at an ultra-fine granularity where even human experts may fail to identify the visual difference. The challenges for Ultra-FGVC mainly comes from two aspects: one is that the Ultra-FGVC often arises overfitting problems due to the lack of training samples; and another lies in that the inter-class variance among images is much smaller than normal FGVC tasks, which makes it difficult to learn discriminative features for each class. To solve these challenges, a mask-guided feature extraction and feature augmentation method is proposed in this paper to extract discriminative and informative regions of images which are then used to augment the original feature map. The advantage of the proposed method is that the feature detection and extraction model only requires a small amount of target region samples with bounding boxes for training, then it can automatically locate the target area for a large number of images in the dataset at a high detection accuracy. Experimental results on two public datasets and ten state-of-the-art benchmark methods consistently demonstrate the effectiveness of the proposed method both visually and quantitatively.
Data augmentation is usually adopted to increase the amount of training data, prevent overfitting and improve the performance of deep models. However, in practice, random data augmentation, such as random image cropping, is low-efficiency and might i ntroduce many uncontrolled background noises. In this paper, we propose Weakly Supervised Data Augmentation Network (WS-DAN) to explore the potential of data augmentation. Specifically, for each training image, we first generate attention maps to represent the objects discriminative parts by weakly supervised learning. Next, we augment the image guided by these attention maps, including attention cropping and attention dropping. The proposed WS-DAN improves the classification accuracy in two folds. In the first stage, images can be seen better since more discriminative parts features will be extracted. In the second stage, attention regions provide accurate location of object, which ensures our model to look at the object closer and further improve the performance. Comprehensive experiments in common fine-grained visual classification datasets show that our WS-DAN surpasses the state-of-the-art methods, which demonstrates its effectiveness.
Discriminative localization is essential for fine-grained image classification task, which devotes to recognizing hundreds of subcategories in the same basic-level category. Reflecting on discriminative regions of objects, key differences among diffe rent subcategories are subtle and local. Existing methods generally adopt a two-stage learning framework: The first stage is to localize the discriminative regions of objects, and the second is to encode the discriminative features for training classifiers. However, these methods generally have two limitations: (1) Separation of the two-stage learning is time-consuming. (2) Dependence on object and parts annotations for discriminative localization learning leads to heavily labor-consuming labeling. It is highly challenging to address these two important limitations simultaneously. Existing methods only focus on one of them. Therefore, this paper proposes the discriminative localization approach via saliency-guided Faster R-CNN to address the above two limitations at the same time, and our main novelties and advantages are: (1) End-to-end network based on Faster R-CNN is designed to simultaneously localize discriminative regions and encode discriminative features, which accelerates classification speed. (2) Saliency-guided localization learning is proposed to localize the discriminative region automatically, avoiding labor-consuming labeling. Both are jointly employed to simultaneously accelerate classification speed and eliminate dependence on object and parts annotations. Comparing with the state-of-the-art methods on the widely-used CUB-200-2011 dataset, our approach achieves both the best classification accuracy and efficiency.
Fine-grained visual classification (FGVC) is becoming an important research field, due to its wide applications and the rapid development of computer vision technologies. The current state-of-the-art (SOTA) methods in the FGVC usually employ attentio n mechanisms to first capture the semantic parts and then discover their subtle differences between distinct classes. The channel-spatial attention mechanisms, which focus on the discriminative channels and regions simultaneously, have significantly improved the classification performance. However, the existing attention modules are poorly guided since part-based detectors in the FGVC depend on the network learning ability without the supervision of part annotations. As obtaining such part annotations is labor-intensive, some visual localization and explanation methods, such as gradient-weighted class activation mapping (Grad-CAM), can be utilized for supervising the attention mechanism. We propose a Grad-CAM guided channel-spatial attention module for the FGVC, which employs the Grad-CAM to supervise and constrain the attention weights by generating the coarse localization maps. To demonstrate the effectiveness of the proposed method, we conduct comprehensive experiments on three popular FGVC datasets, including CUB-$200$-$2011$, Stanford Cars, and FGVC-Aircraft datasets. The proposed method outperforms the SOTA attention modules in the FGVC task. In addition, visualizations of feature maps also demonstrate the superiority of the proposed method against the SOTA approaches.
Fine-grained visual classification is a challenging task that recognizes the sub-classes belonging to the same meta-class. Large inter-class similarity and intra-class variance is the main challenge of this task. Most exiting methods try to solve thi s problem by designing complex model structures to explore more minute and discriminative regions. In this paper, we argue that mining multi-regional multi-grained features is precisely the key to this task. Specifically, we introduce a new loss function, termed top-down spatial attention loss (TDSA-Loss), which contains a multi-stage channel constrained module and a top-down spatial attention module. The multi-stage channel constrained module aims to make the feature channels in different stages category-aligned. Meanwhile, the top-down spatial attention module uses the attention map generated by high-level aligned feature channels to make middle-level aligned feature channels to focus on particular regions. Finally, we can obtain multiple discriminative regions on high-level feature channels and obtain multiple more minute regions within these discriminative regions on middle-level feature channels. In summary, we obtain multi-regional multi-grained features. Experimental results over four widely used fine-grained image classification datasets demonstrate the effectiveness of the proposed method. Ablative studies further show the superiority of two modules in the proposed method. Codes are available at: https://github.com/dongliangchang/Top-Down-Spatial-Attention-Loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا