ﻻ يوجد ملخص باللغة العربية
Pinning down the total neutrino mass and the dark energy equation of state is a key aim for upcoming galaxy surveys. Weak lensing is a unique probe of the total matter distribution whose non-Gaussian statistics can be quantified by the one-point probability distribution function (PDF) of the lensing convergence. We calculate the convergence PDF on mildly non-linear scales from first principles using large-deviation statistics, accounting for dark energy and the total neutrino mass. For the first time, we comprehensively validate the cosmology-dependence of the convergence PDF model against large suites of simulated lensing maps, demonstrating its percent-level precision and accuracy. We show that fast simulation codes can provide highly accurate covariance matrices, which can be combined with the theoretical PDF model to perform forecasts and eliminate the need for relying on expensive N-body simulations. Our theoretical model allows us to perform the first forecast for the convergence PDF that varies the full set of $Lambda$CDM parameters. Our Fisher forecasts establish that the constraining power of the convergence PDF compares favourably to the two-point correlation function for a Euclid-like survey area at a single source redshift. When combined with a CMB prior from Planck, the PDF constrains both the neutrino mass $M_ u$ and the dark energy equation of state $w_0$ more strongly than the two-point correlation function.
We compare the efficiency of moments and Minkowski functionals (MFs) in constraining the subset of cosmological parameters (Omega_m,w,sigma_8) using simulated weak lensing convergence maps. We study an analytic perturbative expansion of the MFs in te
Weak gravitational lensing, the deflection of light by mass, is one of the best tools to constrain the growth of cosmic structure with time and reveal the nature of dark energy. I discuss the sources of systematic uncertainty in weak lensing measurem
We study the morphology of convergence maps by perturbatively reconstructing their Minkowski Functionals (MFs). We present a systematics study using a set of three generalised skew-spectra as a function of source redshift and smoothing angular scale.
Cosmological weak lensing is the powerful probe of cosmology. Here we address one of the most fundamental, statistical questions inherent in weak lensing cosmology: whether or not we can recover the initial Gaussian information content of large-scale
Upcoming surveys such as LSST{} and Euclid{} will significantly improve the power of weak lensing as a cosmological probe. To maximise the information that can be extracted from these surveys, it is important to explore novel statistics that compleme