ترغب بنشر مسار تعليمي؟ اضغط هنا

A sharp rise in the detection rate of broad absorption line variations in a quasar SDSS J141955.26+522741.1

171   0   0.0 ( 0 )
 نشر من قبل Zhicheng He
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the variability of broad absorption lines (BALs) in a quasar SDSS J141955.26+522741.1 at $z=2.145$ with 72 observations from the Sloan Digital Sky Survey Data Release 16 (SDSS DR16). The strong correlation between the equivalent widths of BAL and the continuum luminosity, reveals that the variation of BAL trough is dominated by the photoionization. The photoionization model predicts that when the time interval $Delta T$ between two observations is longer than the recombination timescale $t_{rm rec}$, the BAL variations can be detected. This can be characterized as a sharp rise in the detection rate of BAL variation at $Delta T=t_{rm rec}$. For the first time, we detect such a sharp rise signature in the detection rate of BAL variations. As a result, we propose that the $t_{rm rec}$ can be obtained from the sharp rise of the detection rate of BAL variation. It is worth mentioning that the BAL variations are detected at the time-intervals less than the $t_{rm rec}$ for half an order of magnitude in two individual troughs. This result indicates that there may be multiple components with different $t_{rm rec}$ but the same velocity in an individual trough.



قيم البحث

اقرأ أيضاً

CRTS J084133.15+200525.8 is an optically bright quasar at z=2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V~17.3 between 2002 and 2008. Then, over the following five year s, the source slowly brightened by approximately one magnitude, to V~16.2. Only ~1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line (FeLoBAL) quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H-alpha in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km/s in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.
91 - Patrick B. Hall 2006
I report the discovery of blueshifted broad absorption line (BAL) troughs in at least six transitions of the Balmer series of hydrogen (Hbeta to H9) and in CaII, MgII and excited FeII in the quasar SDSS J125942.80+121312.6. This is only the fourth ac tive galactic nucleus known to exhibit Balmer absorption, all four in conjunction with low-ionization BAL systems containing excited Fe II. The substantial population in the n=2 shell of H I in this quasars absorber likely arises from Ly-alpha trapping. In an absorber sufficiently optically thick to show Balmer absorption, soft X-rays from the quasar penetrate to large tau_Lyalpha and ionize H I. Recombination then creates Ly-alpha photons that increase the n=2 population by a factor tau_Lyalpha since they require about tau_Lyalpha scatterings to diffuse out of the absorber. Observing Ly-alpha trapping in a quasar absorber requires a large but Compton-thin column of gas along our line of sight which includes substantial H I but not too much dust. Presumably the rarity of Balmer-line BAL troughs reflects the rarity of such conditions in quasar absorbers.
We report on the highly variable SiIV and CIV broad absorption lines in SDSS J113831.4+351725.2 across four observational epochs. Using the SiIV doublet components, we find that the blue component is usually saturated and non-black, with the ratio of optical depths between the two components rarely being 2:1. This indicates that these absorbers do not fully cover the line-of-sight and thus a simple apparent optical depth model is insufficient when measuring the true opacity of the absorbers. Tests with inhomogeneous (power-law) and pure-partial coverage (step-function) models of the absorbing SiIV optical depth predict the most un-blended doublets component profiles equally well. However, when testing with Gaussian-fitted doublet components to all SiIV absorbers and averaging the total absorption predicted in each doublet, the upper limit of the power law index is mostly unconstrained. This leads us to favour pure partial coverage as a more accurate measure of the true optical depth than the inhomogeneous power law model. The pure-partial coverage model indicates no significant change in covering fraction across the epochs, with changes in the incident ionizing flux on the absorbing gas instead being favoured as the variability mechanism. This is supported by (a) the coordinated behaviour of the absorption troughs, (b) the behaviour of the continuum at the blue end of the spectrum and (c) the consistency of photoionization simulations of ionic column density dependencies on ionization parameter with the observed variations. Evidence from the simulations together with the CIV absorption profile indicates that the absorber lies outside the broad line region, though the precise distance and kinetic luminosity are not well constrained.
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kineti c energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift $z_e = 2.56$), aided by the first detection of PV $lambdalambda$1118,1128 BAL variability in a quasar. In particular, PV absorption at velocities where the CIV trough does not reach zero intensity implies that the CIV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log N_H > 22.3 (cm^-2). Variability in the PV and saturated CIV BALs strongly disfavors changes in the ionization as the cause of the BAL variability, but supports models with high-column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km/s and a radial distance from the central black hole of <3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ~4100 M_solar, the kinetic energy ~4x10^54 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ~0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasars host galaxy.
Despite extensive efforts, only two quasars have been found at $z>7$ to date due to a combination of low spatial density and high contamination from more ubiquitous Galactic cool dwarfs in quasar selection. This limits our current knowledge of the su per-massive black hole (SMBH) growth mechanism and reionization history. In this letter, we report the discovery of a luminous quasar at $z=7.021$, DELS J003836.10$-$152723.6 (hereafter J0038$-$1527), selected using photometric data from DESI Legacy imaging Survey (DELS), Pan-STARRS1 (PS1) imaging Survey, as well as Wide-field Infrared Survey Explore ($WISE$) mid-infrared all-sky survey. With an absolute magnitude of $M_{1450}$=$-$27.1 and bolometric luminosity of $L_{rm Bol}$=5.6$times$10$^{13}$ $L_odot$, J0038$-$1527 is the most luminous quasar known at $z>7$. Deep optical to near infrared spectroscopic observations suggest that J0038-1527 hosts a 1.3 billion solar mass BH accreting at the Eddington limit, with an Eddington ratio of 1.25$pm$0.19. The CIV broad emission line of J0038$-$1527 is blue-shifted by more than 3000 km s$^{-1}$ to the systemic redshift. More detailed investigations of the high quality spectra reveal three extremely high velocity CIV broad absorption lines (BALs) with velocity from 0.08 to 0.14 times the speed of light and total balnicity index of more than 5000 km s$^{-1}$, suggesting the presence of relativistic outflows. J0038$-$1527 is the first quasar found at the epoch of reionization (EoR) with such strong outflows and provides a unique laboratory to investigate AGN feedback on the formation and growth of the most massive galaxies in the early universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا