ترغب بنشر مسار تعليمي؟ اضغط هنا

MICROSCOPE mission: Statistics and impact of glitches on the test of the weak equivalence principle

110   0   0.0 ( 0 )
 نشر من قبل Joel Berg\\'e
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MICROSCOPEs space test of the weak equivalence principle (WEP) is based on the minute measurement of the difference of accelerations experienced by two test masses as they orbit the Earth. A detection of a violation of the WEP would appear at a well-known frequency $f_{rm EP}$ depending on the satellites orbital and spinning frequencies. Consequently, the experiment was optimised to miminise systematic errors at $f_{rm EP}$. Glitches are short-lived events visible in the test masses measured acceleration, most likely originating in cracks of the satellites coating. In this paper, we characterise their shape and time distribution. Although intrinsically random, their time of arrival distribution is modulated by the orbital and spinning periods. They have an impact on the WEP test that must be quantified. However, the data available prevents us from unequivocally tackling this task. We show that glitches affect the test of the WEP, up to an a priori unknown level. Discarding the perturbed data is thus the best way to reduce their effect.

قيم البحث

اقرأ أيضاً

After performing highly sensitive acceleration measurements during two years of drag-free flight around the Earth, MICROSCOPE provided the best constraint on the Weak Equivalence Principle (WEP) to date. Beside being a technological challenge, this e xperiment required a specialised data analysis pipeline to look for a potential small signal buried in the noise, possibly plagued by instrumental defects, missing data and glitches. This paper describes the frequency-domain iterative least-square technique that we developed for MICROSCOPE. In particular, using numerical simulations, we prove that our estimator is unbiased and provides correct error bars. This paper therefore justifies the robustness of the WEP measurements given by MICROSCOPE.
We propose an experiment to test the Weak Equivalence Principle (WEP) with a test mass consisting of two entangled atoms of different species. In the proposed experiment, a coherent measurement of the differential gravity acceleration between the two atomic species is considered, by entangling two atom interferometers operating on the two species. The entanglement between the two atoms is heralded at the initial beam splitter of the interferometers through the detection of a single photon emitted by either of the atoms, together with the impossibility of distinguishing which atom emitted the photon. In contrast to current and proposed tests of the WEP, our proposal explores the validity of the WEP in a regime where the two particles involved in the differential gravity acceleration measurement are not classically independent, but entangled. We propose an experimental implementation using $^{85}$Rb and $^{87}$Rb atoms entangled by a vacuum stimulated rapid adiabatic passage protocol implemented in a high finesse optical cavity. We show that an accuracy below $10^{-7}$ on the Eotvos parameter can be achieved.
We present in detail the scientific objectives in fundamental physics of the Space-Time Explorer and QUantum Equivalence Space Test (STE-QUEST) space mission. STE-QUEST was pre-selected by the European Space Agency together with four other missions f or the cosmic vision M3 launch opportunity planned around 2024. It carries out tests of different aspects of the Einstein Equivalence Principle using atomic clocks, matter wave interferometry and long distance time/frequency links, providing fascinating science at the interface between quantum mechanics and gravitation that cannot be achieved, at that level of precision, in ground experiments. We especially emphasize the specific strong interest of performing equivalence principle tests in the quantum regime, i.e. using quantum atomic wave interferometry. Although STE-QUEST was finally not selected in early 2014 because of budgetary and technological reasons, its science case was very highly rated. Our aim is to expose that science to a large audience in order to allow future projects and proposals to take advantage of the STE-QUEST experience.
Einstein equivalence principle (EEP), as one of the foundations of general relativity, is a fundamental test of gravity theories. In this paper, we propose a new method to test the EEP of electromagnetic interactions through observations of black hol e photon rings, which naturally extends the scale of Newtonian and post-Newtoian gravity where the EEP violation through a variable fine structure constant has been well constrained to that of stronger gravity. We start from a general form of Lagrangian that violates EEP, where a specific EEP violation model could be regarded as one of the cases of this Lagrangian. Within the geometrical optical approximation, we find that the dispersion relation of photons is modified: for photons moving in circular orbit, the dispersion relation simplifies, and behaves such that photons with different linear polarizations perceive different gravitational potentials. This makes the size of black hole photon ring depend on polarization. Further assuming that the EEP violation is small, we derive an approximate analytic expression for spherical black holes showing that the change in size of the photon ring is proportional to the violation parameters. We also discuss several cases of this analytic expression for specific models. Finally, we explore the effects of black hole rotation and derive a modified proportionality relation between the change in size of photon ring and the violation parameters. The numerical and analytic results show that the influence of black hole rotation on the constraints of EEP violation is relatively weak for small magnitude of EEP violation and small rotation speed of black holes.
We briefly summarize motivations for testing the weak equivalence principle and then review recent torsion-balance results that compare the differential accelerations of beryllium-aluminum and beryllium-titanium test body pairs with precisions at the part in $10^{13}$ level. We discuss some implications of these results for the gravitational properties of antimatter and dark matter, and speculate about the prospects for further improvements in experimental sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا