ﻻ يوجد ملخص باللغة العربية
Recent advances in hyperbolic metamaterials have spurred many breakthroughs in the field of manipulating light propagation. However, the unusual electromagnetic properties also put extremely high demands on its compositional materials. Limited by the finite relative permittivity of the natural materials, the effective permittivity of the constructed hyperbolic metamaterials is also confined to a narrow range. Here, based on the proposed concept of structure-induced spoof surface plasmon, we prove that arbitrary materials can be selected to construct the hyperbolic metamaterials with independent relative effective permittivity components. Besides, the theoretical achievable ranges of the relative effective permittivity components are unlimited. As proofs of the method, three novel hyperbolic metamaterials are designed with their functionalities validated numerically and experimentally by specified directional propagation. To further illustrate the superiority of the method, an all-metal low-loss hyperbolic metamaterial filled with air is proposed and demonstrated. The proposed methodology effectively reduces the design requirement for hyperbolic metamaterials and provides new ideas for the scenarios where large permittivity coverage is needed such as microwave and terahertz focus, super-resolution imaging, electromagnetic cloaking, and so on.
Controlling light propagation using artificial photonic crystals and electromagnetic metamaterials is an important topic in the vibrant field of photonics. Notably, chiral edge states on the surface or at the interface of photonic Chern insulators ca
In recent years significant efforts have been made to design and fabricate functional nanomaterials for biomedical applications based on the control of light matter interaction at the nanometer scale. Among many other artificial materials, hyperbolic
We propose a novel mechanism for designing quantum hyperbolic metamaterials with use of semi-conductor Bragg mirrors containing periodically arrangedquantum wells. The hyperbolic dispersion of exciton-polariton modes is realized near the top of the f
The implementation of hyperbolic metamaterials as component in optical waveguides, semiconductor light emitters and solar cells has been limited by the inherent loss in the metallic layers. The features of a hyperbolic metamaterial arise by the prese
Hyperbolic metamaterials (HMMs) are highly anisotropic optical materials that behave as metals or as dielectrics depending on the direction of propagation of light. They are becoming essential for a plethora of applications, ranging from aerospace to