ﻻ يوجد ملخص باللغة العربية
The constraint satisfaction problem (CSP) of a first-order theory $T$ is the computational problem of deciding whether a given conjunction of atomic formulas is satisfiable in some model of $T$. We study the computational complexity of $mathrm{CSP}(T_1 cup T_2)$ where $T_1$ and $T_2$ are theories with disjoint finite relational signatures. We prove that if $T_1$ and $T_2$ are the theories of temporal structures, i.e., structures where all relations have a first-order definition in $(mathbb{Q};<)$, then $mathrm{CSP}(T_1 cup T_2)$ is in P or NP-complete. To this end we prove a purely algebraic statement about the structure of the lattice of locally closed clones over the domain ${mathbb Q}$ that contain $mathrm{Aut}(mathbb{Q};<)$.
For a first-order theory $T$, the Constraint Satisfaction Problem of $T$ is the computational problem of deciding whether a given conjunction of atomic formulas is satisfiable in some model of $T$. In this article we develop sufficient conditions for
In the field of constraint satisfaction problems (CSP), promise CSPs are an exciting new direction of study. In a promise CSP, each constraint comes in two forms: strict and weak, and in the associated decision problem one must distinguish between be
For formulas F of propositional calculus I introduce a metavariable MF and show how it can be used to define an algorithm for testing satisfiability. MF is a formula which is true/false under all possible truth assignments iff F is satisfiable/unsati
This note introduces a generalization to the setting of infinite-time computation of the busy beaver problem from classical computability theory, and proves some results concerning the growth rate of an associated function. In our view, these results
Robin Hirsch posed in 1996 the Really Big Complexity Problem: classify the computational complexity of the network satisfaction problem for all finite relation algebras $bf A$. We provide a complete classification for the case that $bf A$ is symmetri