ﻻ يوجد ملخص باللغة العربية
We describe a new form of diagonalization for linear two point constant coefficient differential operators with arbitrary linear boundary conditions. Although the diagonalization is in a weaker sense than that usually employed to solve initial boundary value problems (IBVP), we show that it is sufficient to solve IBVP whose spatial parts are described by such operators. We argue that the method described may be viewed as a reimplementation of the Fokas transform method for linear evolution equations on the finite interval. The results are extended to multipoint and interface operators, including operators defined on networks of finite intervals, in which the coefficients of the differential operator may vary between subintervals, and arbitrary interface and boundary conditions may be imposed; differential operators with piecewise constant coefficient are thus included. Both homogeneous and inhomogeneous problems are solved.
We introduce the concept of essential numerical range $W_{!e}(T)$ for unbounded Hilbert space operators $T$ and study its fundamental properties including possible equivalent characterizations and perturbation results. Many of the properties known fo
The present paper deals with the spectral and the oscillation properties of a linear pencil $A-lambda B$. Here $A$ and $B$ are linear operators generated by the differential expressions $(py)$ and $-y+ cry$, respectively. In particular, it is shown t
The compression of the resolvent of a non-self-adjoint Schrodinger operator $-Delta+V$ onto a subdomain $Omegasubsetmathbb R^n$ is expressed in a Krein-Naimark type formula, where the Dirichlet realization on $Omega$, the Dirichlet-to-Neumann maps, a
In this paper we prove that the Dirac operator $A_eta$ with an electrostatic $delta$-shell interaction of critical strength $eta = pm 2$ supported on a $C^2$-smooth compact surface $Sigma$ is self-adjoint in $L^2(mathbb{R}^3;mathbb{C}^4)$, we describ
We present the numerical solution of two-point boundary value problems for a third order linear PDE, representing a linear evolution in one space dimension. The difficulty of this problem is in the numerical imposition of the boundary conditions, and