ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensor Composition Net for Visual Relationship Prediction

125   0   0.0 ( 0 )
 نشر من قبل Yuting Qiang Ms
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel Tensor Composition Network (TCN) to predict visual relationships in images. Visual Relationships in subject-predicate-object form provide a more powerful query modality than simple image tags. However Visual Relationship Prediction (VRP) also provides a more challenging test of image understanding than conventional image tagging, and is difficult to learn due to a large label-space and incomplete annotation. The key idea of our TCN is to exploit the low rank property of the visual relationship tensor, so as to leverage correlations within and across objects and relationships, and make a structured prediction of all objects and their relations in an image. To show the effectiveness of our method, we first empirically compare our model with multi-label classification alternatives on VRP, and show that our model outperforms state-of-the-art MLIC methods. We then show that, thanks to our tensor (de)composition layer, our model can predict visual relationships which have not been seen in training dataset. We finally show our TCNs image-level visual relationship prediction provides a simple and efficient mechanism for relation-based image retrieval.



قيم البحث

اقرأ أيضاً

Social relationships form the basis of social structure of humans. Developing computational models to understand social relationships from visual data is essential for building intelligent machines that can better interact with humans in a social env ironment. In this work, we study the problem of visual social relationship recognition in images. We propose a Dual-Glance model for social relationship recognition, where the first glance fixates at the person of interest and the second glance deploys attention mechanism to exploit contextual cues. To enable this study, we curated a large scale People in Social Context (PISC) dataset, which comprises of 23,311 images and 79,244 person pairs with annotated social relationships. Since visually identifying social relationship bears certain degree of uncertainty, we further propose an Adaptive Focal Loss to leverage the ambiguous annotations for more effective learning. We conduct extensive experiments to quantitatively and qualitatively demonstrate the efficacy of our proposed method, which yields state-of-the-art performance on social relationship recognition.
Visual 2.5D perception involves understanding the semantics and geometry of a scene through reasoning about object relationships with respect to the viewer in an environment. However, existing works in visual recognition primarily focus on the semant ics. To bridge this gap, we study 2.5D visual relationship detection (2.5VRD), in which the goal is to jointly detect objects and predict their relative depth and occlusion relationships. Unlike general VRD, 2.5VRD is egocentric, using the cameras viewpoint as a common reference for all 2.5D relationships. Unlike depth estimation, 2.5VRD is object-centric and not only focuses on depth. To enable progress on this task, we create a new dataset consisting of 220k human-annotated 2.5D relationships among 512K objects from 11K images. We analyze this dataset and conduct extensive experiments including benchmarking multiple state-of-the-art VRD models on this task. Our results show that existing models largely rely on semantic cues and simple heuristics to solve 2.5VRD, motivating further research on models for 2.5D perception. The new dataset is available at https://github.com/google-research-datasets/2.5vrd.
Large scale visual understanding is challenging, as it requires a model to handle the widely-spread and imbalanced distribution of <subject, relation, object> triples. In real-world scenarios with large numbers of objects and relations, some are seen very commonly while others are barely seen. We develop a new relationship detection model that embeds objects and relations into two vector spaces where both discriminative capability and semantic affinity are preserved. We learn both a visual and a semantic module that map features from the two modalities into a shared space, where matched pairs of features have to discriminate against those unmatched, but also maintain close distances to semantically similar ones. Benefiting from that, our model can achieve superior performance even when the visual entity categories scale up to more than 80,000, with extremely skewed class distribution. We demonstrate the efficacy of our model on a large and imbalanced benchmark based of Visual Genome that comprises 53,000+ objects and 29,000+ relations, a scale at which no previous work has ever been evaluated at. We show superiority of our model over carefully designed baselines on the original Visual Genome dataset with 80,000+ categories. We also show state-of-the-art performance on the VRD dataset and the scene graph dataset which is a subset of Visual Genome with 200 categories.
In this paper, we propose a fixed-size object encoding method (FOE-VRD) to improve performance of visual relationship detection tasks. Comparing with previous methods, FOE-VRD has an important feature, i.e., it uses one fixed-size vector to encoding all objects in each input image to assist the process of relationship detection. Firstly, we use a regular convolution neural network as a feature extractor to generate high-level features of input images. Then, for each relationship triplet in input images, i.e., $<$subject-predicate-object$>$, we apply ROI-pooling to get feature vectors of two regions on the feature maps that corresponding to bounding boxes of the subject and object. Besides the subject and object, our analysis implies that the results of predicate classification may also related to the rest objects in input images (we call them background objects). Due to the variable number of background objects in different images and computational costs, we cannot generate feature vectors for them one-by-one by using ROI pooling technique. Instead, we propose a novel method to encode all background objects in each image by using one fixed-size vector (i.e., FBE vector). By concatenating the 3 vectors we generate above, we successfully encode the objects using one fixed-size vector. The generated feature vector is then feed into a fully connected neural network to get predicate classification results. Experimental results on VRD database (entire set and zero-shot tests) show that the proposed method works well on both predicate classification and relationship detection.
Visual localization is of great importance in robotics and computer vision. Recently, scene coordinate regression based methods have shown good performance in visual localization in small static scenes. However, it still estimates camera poses from m any inferior scene coordinates. To address this problem, we propose a novel visual localization framework that establishes 2D-to-3D correspondences between the query image and the 3D map with a series of learnable scene-specific landmarks. In the landmark generation stage, the 3D surfaces of the target scene are over-segmented into mosaic patches whose centers are regarded as the scene-specific landmarks. To robustly and accurately recover the scene-specific landmarks, we propose the Voting with Segmentation Network (VS-Net) to segment the pixels into different landmark patches with a segmentation branch and estimate the landmark locations within each patch with a landmark location voting branch. Since the number of landmarks in a scene may reach up to 5000, training a segmentation network with such a large number of classes is both computation and memory costly for the commonly used cross-entropy loss. We propose a novel prototype-based triplet loss with hard negative mining, which is able to train semantic segmentation networks with a large number of labels efficiently. Our proposed VS-Net is extensively tested on multiple public benchmarks and can outperform state-of-the-art visual localization methods. Code and models are available at href{https://github.com/zju3dv/VS-Net}{https://github.com/zju3dv/VS-Net}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا