ترغب بنشر مسار تعليمي؟ اضغط هنا

Segmenting Natural Language Sentences via Lexical Unit Analysis

161   0   0.0 ( 0 )
 نشر من قبل Yangming Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present Lexical Unit Analysis (LUA), a framework for general sequence segmentation tasks. Given a natural language sentence, LUA scores all the valid segmentation candidates and utilizes dynamic programming (DP) to extract the maximum scoring one. LUA enjoys a number of appealing properties such as inherently guaranteeing the predicted segmentation to be valid and facilitating globally optimal training and inference. Besides, the practical time complexity of LUA can be reduced to linear time, which is very efficient. We have conducted extensive experiments on 5 tasks, including syntactic chunking, named entity recognition (NER), slot filling, Chinese word segmentation, and Chinese part-of-speech (POS) tagging, across 15 datasets. Our models have achieved the state-of-the-art performances on 13 of them. The results also show that the F1 score of identifying long-length segments is notably improved.



قيم البحث

اقرأ أيضاً

We present SherLIiC, a testbed for lexical inference in context (LIiC), consisting of 3985 manually annotated inference rule candidates (InfCands), accompanied by (i) ~960k unlabeled InfCands, and (ii) ~190k typed textual relations between Freebase e ntities extracted from the large entity-linked corpus ClueWeb09. Each InfCand consists of one of these relations, expressed as a lemmatized dependency path, and two argument placeholders, each linked to one or more Freebase types. Due to our candidate selection process based on strong distributional evidence, SherLIiC is much harder than existing testbeds because distributional evidence is of little utility in the classification of InfCands. We also show that, due to its construction, many of SherLIiCs correct InfCands are novel and missing from existing rule bases. We evaluate a number of strong baselines on SherLIiC, ranging from semantic vector space models to state of the art neural models of natural language inference (NLI). We show that SherLIiC poses a tough challenge to existing NLI systems.
We address whether neural models for Natural Language Inference (NLI) can learn the compositional interactions between lexical entailment and negation, using four methods: the behavioral evaluation methods of (1) challenge test sets and (2) systemati c generalization tasks, and the structural evaluation methods of (3) probes and (4) interventions. To facilitate this holistic evaluation, we present Monotonicity NLI (MoNLI), a new naturalistic dataset focused on lexical entailment and negation. In our behavioral evaluations, we find that models trained on general-purpose NLI datasets fail systematically on MoNLI examples containing negation, but that MoNLI fine-tuning addresses this failure. In our structural evaluations, we look for evidence that our top-performing BERT-based model has learned to implement the monotonicity algorithm behind MoNLI. Probes yield evidence consistent with this conclusion, and our intervention experiments bolster this, showing that the causal dynamics of the model mirror the causal dynamics of this algorithm on subsets of MoNLI. This suggests that the BERT model at least partially embeds a theory of lexical entailment and negation at an algorithmic level.
Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. NLP models built with the conventional paradigm, however, often struggle with gen eralization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that is equipped with the understanding of human-readable instructions that define the tasks, and can generalize to new tasks. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions and 193k task instances. The instructions are obtained from crowdsourcing instructions used to collect existing NLP datasets and mapped to a unified schema. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models can benefit from instructions to generalize across tasks. These models, however, are far behind supervised task-specific models, indicating significant room for more progress in this direction.
Lexical inference in context (LIiC) is the task of recognizing textual entailment between two very similar sentences, i.e., sentences that only differ in one expression. It can therefore be seen as a variant of the natural language inference task tha t is focused on lexical semantics. We formulate and evaluate the first approaches based on pretrained language models (LMs) for this task: (i) a few-shot NLI classifier, (ii) a relation induction approach based on handcrafted patterns expressing the semantics of lexical inference, and (iii) a variant of (ii) with patterns that were automatically extracted from a corpus. All our approaches outperform the previous state of the art, showing the potential of pretrained LMs for LIiC. In an extensive analysis, we investigate factors of success and failure of our three approaches.
While recent advances in language modeling have resulted in powerful generation models, their generation style remains implicitly dependent on the training data and can not emulate a specific target style. Leveraging the generative capabilities of a transformer-based language models, we present an approach to induce certain target-author attributes by incorporating continuous multi-dimensional lexical preferences of an author into generative language models. We introduce rewarding strategies in a reinforcement learning framework that encourages the use of words across multiple categorical dimensions, to varying extents. Our experiments demonstrate that the proposed approach can generate text that distinctively aligns with a given target authors lexical style. We conduct quantitative and qualitative comparisons with competitive and relevant baselines to illustrate the benefits of the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا