ﻻ يوجد ملخص باللغة العربية
We study the physics potential of the long-baseline experiments T2HK, T2HKK and ESS$ u$SB in the context of invisible neutrino decay. We consider normal mass ordering and assume that the state $ u_{3}$ as unstable, decaying into sterile states during the flight and obtain constraints on the neutrino decay lifetime ($tau_3$). We find that T2HK, T2HKK and ESS$ u$SB are sensitive to the decay-rate of $ u_{3}$ for $tau_{3}/m_{3} leq 2.72times10^{-11}$s/eV, $tau_{3}/m_{3} leq 4.36times10^{-11}$s/eV and $tau_{3}/m_{3} leq 2.43times10^{-11}$s/eV respectively at 3$sigma$ C.L. We compare and contrast the sensitivities of the three experiments and specially investigate the role played by the mixing angle $theta_{23}$. It is seen that for experiments with flux peak near the second oscillation maxima, the poorer sensitivity to $theta_{23}$ results in weaker constraints on the decay lifetime. Although, T2HKK has one detector close to the second oscillation maxima, having another detector at the first oscillation maxima results in superior sensitivity to decay. In addition, we find a synergy between the two baselines of the T2HKK experiment which helps in giving a better sensitivity for $theta_{23}$ in the higher octant. We discuss the octant sensitivity in presence of decay and show that there is an enhancement in sensitivity which occurs due to the contribution from the survival probability $P_{mumu}$ which is more pronounced for the experiments at the second oscillation maxima. We also obtain the combined sensitivity of T2HK+ESS$ u$SB and T2HKK+ESS$ u$SB as $tau_{3}/m_{3} leq 4.36times10^{-11}$s/eV and $tau_{3}/m_{3} leq 5.53times10^{-11}$s/eV respectively at 3$sigma$ C.L.
Current long-baseline neutrino-oscillation experiments such as NO$ u$A and T2K are mainly sensitive to physics in the neighbourhood of the first oscillation maximum of the $ u_mu to u_e$ oscillation probability. The future Deep Underground Neutrino
Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile n
The hypothesis of the decay of neutrino mass eigenstates leads to a substantial modification of the appearance and disappearance probabilities of flavor eigenstates. We investigate the impact on the standard oscillation scenario caused by the decay o
The experimental bound on lifetime of nu_3, the neutrino mass eigenstate with the smallest nu_e component, is much weaker than those of nu_1 and nu_2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future r
Taking account of possible CP violation, we discuss about the constraints on the lepton mixing angles from the neutrinoless double beta decay and from the neutrino oscillation for the three flavour Majorana neutrinos. From the CHORUS oscillation expe