ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing the projection correction of Coronal Mass Ejection speeds on Time-of-Arrival prediction performance using the Effective Acceleration Model

77   0   0.0 ( 0 )
 نشر من قبل Evangelos Paouris
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

White light images of Coronal Mass Ejections (CMEs) are projections on the plane-of-sky (POS). As a result, CME kinematics are subject to projection effects. The error in the true (deprojected) speed of CMEs is one of the main causes of uncertainty to Space Weather forecasts, since all estimates of the CME Time-of-Arrival (ToA) at a certain location within the heliosphere require, as input, the CME speed. We use single viewpoint observations for 1037 flare-CME events between 1996-2017 and propose a new approach for the correction of the CME speed assuming radial propagation from the flare site. Our method is uniquely capable to produce physically reasonable deprojected speeds across the full range of source longitudes. We bound the uncertainty in the deprojected speed estimates via limits in the true angular width of a CME based on multiview-point observations. Our corrections range up to 1.37-2.86 for CMEs originating from the center of the disk. On average, the deprojected speeds are 12.8% greater than their POS speeds. For slow CMEs (VPOS < 400 km/s) the full ice-cream cone model performs better while for fast and very fast CMEs (VPOS > 700 km/s) the shallow ice-cream model gives much better results. CMEs with 691-878 km/s POS speeds have a minimum ToA mean absolute error (MAE) of 11.6 hours. This method, is robust, easy to use, and has immediate applicability to Space Weather forecasting applications. Moreover, regarding the speed of CMEs, our work suggests that single viewpoint observations are generally reliable.



قيم البحث

اقرأ أيضاً

Coronal mass ejections (CMEs) cause various disturbances of the space environment; therefore, forecasting their arrival time is very important. However, forecasting accuracy is hindered by limited CME observations in interplanetary space. This study investigates the accuracy of CME arrival times at the Earth forecasted by three-dimensional (3D) magnetohydrodynamic (MHD) simulations based on interplanetary scintillation (IPS) observations. In this system, CMEs are approximated as spheromaks with various initial speeds. Ten MHD simulations with different CME initial speed are tested, and the density distributions derived from each simulation run are compared with IPS data observed by the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. The CME arrival time of the simulation run that most closely agrees with the IPS data is selected as the forecasted time. We then validate the accuracy of this forecast using 12 halo CME events. The average absolute arrival-time error of the IPS-based MHD forecast is approximately 5.0 h, which is one of the most accurate predictions that ever been validated, whereas that of MHD simulations without IPS data, in which the initial CME speed is derived from white-light coronagraph images, is approximately 6.7 h. This suggests that the assimilation of IPS data into MHD simulations can improve the accuracy of CME arrival-time forecasts. The average predicted arrival times are earlier than the actual arrival times. These early predictions may be due to overestimation of the magnetic field included in the spheromak and/or underestimation of the drag force from the background solar wind, the latter of which could be related to underestimation of CME size or background solar wind density.
The Solar TErrestrial RElations Observatory (STEREO) and its heliospheric imagers (HI) have provided us the possibility to enhance our understanding of the interplanetary propagation of coronal mass ejections (CMEs). HI-based methods are able to fore cast arrival times and speeds at any target and use the advantage of tracing a CMEs path of propagation up to 1 AU. In our study we use the ELEvoHI model for CME arrival prediction together with an ensemble approach to derive uncertainties in the modeled arrival time and impact speed. The CME from 3 November 2010 is analyzed by performing 339 model runs that are compared to in situ measurements from lined-up spacecraft MESSENGER and STEREO-B. Remote data from STEREO-B showed the CME as halo event, which is comparable to an HI observer situated at L1 and observing an Earth-directed CME. A promising and easy approach is found by using the frequency distributions of four ELEvoHI output parameters, drag parameter, background solar wind speed, initial distance and speed. In this case study, the most frequent values of these outputs lead to the predictions with the smallest errors. Restricting the ensemble to those runs, we are able to reduce the mean absolute arrival time error from $3.5 pm 2.6$ h to $1.6 pm 1.1$ h at 1 AU. Our study suggests that L1 may provide a sufficient vantage point for an Earth-directed CME, when observed by HI, and that ensemble modeling could be a feasible approach to use ELEvoHI operationally.
Context. Some of the most prominent sources for particle acceleration in our Solar System are large eruptions of magnetised plasma from the Sun called coronal mass ejections (CMEs). These accelerated particles can generate radio emission through vari ous mechanisms. Aims. CMEs are often accompanied by a variety of solar radio bursts with different shapes and characteristics in dynamic spectra. Radio bursts directly associated with CMEs often show movement in the direction of CME expansion. Here, we aim to determine the emission mechanism of multiple moving radio bursts that accompanied a flare and CME that took place on 14 June 2012. Methods. We used radio imaging from the Nancay Radioheliograph, combined with observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, to analyse these moving radio bursts in order to determine their emission mechanism and three-dimensional (3D) location with respect to the expanding CME. Results. In using a 3D representation of the particle acceleration locations in relation to the overlying coronal magnetic field and the CME propagation, for the first time, we provide evidence that these moving radio bursts originate near the CME flanks and some that are possible signatures of shock-accelerated electrons following the fast CME expansion in the low corona. Conclusions. The moving radio bursts, as well as other stationary bursts observed during the eruption, occur simultaneously with a type IV continuum in dynamic spectra, which is not usually associated with emission at the CME flanks. Our results show that moving radio bursts that could traditionally be classified as moving type IVs can represent shock signatures associated with CME flanks or plasma emission inside the CME behind its flanks, which are closely related to the lateral expansion of the CME in the low corona.
Coronal mass ejections (CMEs) cause disturbances in the environment of the Earth when they arrive at the Earth. However, the prediction of the arrival of CMEs still remains a challenge. We have developed an interplanetary scintillation (IPS) estimati on system based on a global magnetohydrodynamic (MHD) simulation of the inner heliosphere to predict the arrival time of CMEs. In this system, the initial speed of a CME is roughly derived from white light coronagraph observations. Then, the propagation of the CME is calculated by a global MHD simulation. The IPS response is estimated by the three-dimensional density distribution of the inner heliosphere derived from the MHD simulation. The simulated IPS response is compared with the actual IPS observations made by the Institute for Space-Earth Environmental Research, Nagoya University, and shows good agreement with that observed. We demonstrated how the simulation system works using a halo CME event generated by a X9.3 flare observed on September 5, 2017. We find that the CME simulation that best estimates the IPS observation can more accurately predict the time of arrival of the CME at the Earth. These results suggest that the accuracy of the CME arrival time can be improved if our current MHD simulations include IPS data.
Forecasting the arrival time of CMEs and their associated shocks is one of the key aspects of space weather research. One of the commonly used models is, due to its simplicity and calculation speed, the analytical drag-based model (DBM) for heliosphe ric propagation of CMEs. DBM relies on the observational fact that slow CMEs accelerate whereas fast CMEs decelerate, and is based on the concept of MHD drag, which acts to adjust the CME speed to the ambient solar wind. Although physically DBM is applicable only to the CME magnetic structure, it is often used as a proxy for the shock arrival. In recent years, the DBM equation has been used in many studies to describe the propagation of CMEs and shocks with different geometries and assumptions. Here we give an overview of the five D
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا