ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass Segmentation, Diagnosis, and Quantitative Patient Management

120   0   0.0 ( 0 )
 نشر من قبل Tianyi Zhao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The pancreatic disease taxonomy includes ten types of masses (tumors or cysts)[20,8]. Previous work focuses on developing segmentation or classification methods only for certain mass types. Differential diagnosis of all mass types is clinically highly desirable [20] but has not been investigated using an automated image understanding approach. We exploit the feasibility to distinguish pancreatic ductal adenocarcinoma (PDAC) from the nine other nonPDAC masses using multi-phase CT imaging. Both image appearance and the 3D organ-mass geometry relationship are critical. We propose a holistic segmentation-mesh-classification network (SMCN) to provide patient-level diagnosis, by fully utilizing the geometry and location information, which is accomplished by combining the anatomical structure and the semantic detection-by-segmentation network. SMCN learns the pancreas and mass segmentation task and builds an anatomical correspondence-aware organ mesh model by progressively deforming a pancreas prototype on the raw segmentation mask (i.e., mask-to-mesh). A new graph-based residual convolutional network (Graph-ResNet), whose nodes fuse the information of the mesh model and feature vectors extracted from the segmentation network, is developed to produce the patient-level differential classification results. Extensive experiments on 661 patients CT scans (five phases per patient) show that SMCN can improve the mass segmentation and detection accuracy compared to the strong baseline method nnUNet (e.g., for nonPDAC, Dice: 0.611 vs. 0.478; detection rate: 89% vs. 70%), achieve similar sensitivity and specificity in differentiating PDAC and nonPDAC as expert radiologists (i.e., 94% and 90%), and obtain results comparable to a multimodality test [20] that combines clinical, imaging, and molecular testing for clinical management of patients.



قيم البحث

اقرأ أيضاً

105 - Qiufu Li , Linlin Shen 2021
3D neuron segmentation is a key step for the neuron digital reconstruction, which is essential for exploring brain circuits and understanding brain functions. However, the fine line-shaped nerve fibers of neuron could spread in a large region, which brings great computational cost to the segmentation in 3D neuronal images. Meanwhile, the strong noises and disconnected nerve fibers in the image bring great challenges to the task. In this paper, we propose a 3D wavelet and deep learning based 3D neuron segmentation method. The neuronal image is first partitioned into neuronal cubes to simplify the segmentation task. Then, we design 3D WaveUNet, the first 3D wavelet integrated encoder-decoder network, to segment the nerve fibers in the cubes; the wavelets could assist the deep networks in suppressing data noise and connecting the broken fibers. We also produce a Neuronal Cube Dataset (NeuCuDa) using the biggest available annotated neuronal image dataset, BigNeuron, to train 3D WaveUNet. Finally, the nerve fibers segmented in cubes are assembled to generate the complete neuron, which is digitally reconstructed using an available automatic tracing algorithm. The experimental results show that our neuron segmentation method could completely extract the target neuron in noisy neuronal images. The integrated 3D wavelets can efficiently improve the performance of 3D neuron segmentation and reconstruction. The code and pre-trained models for this work will be available at https://github.com/LiQiufu/3D-WaveUNet.
Spinal surgery planning necessitates automatic segmentation of vertebrae in cone-beam computed tomography (CBCT), an intraoperative imaging modality that is widely used in intervention. However, CBCT images are of low-quality and artifact-laden due t o noise, poor tissue contrast, and the presence of metallic objects, causing vertebra segmentation, even manually, a demanding task. In contrast, there exists a wealth of artifact-free, high quality CT images with vertebra annotations. This motivates us to build a CBCT vertebra segmentation model using unpaired CT images with annotations. To overcome the domain and artifact gaps between CBCT and CT, it is a must to address the three heterogeneous tasks of vertebra segmentation, artifact reduction and modality translation all together. To this, we propose a novel anatomy-aware artifact disentanglement and segmentation network (A$^3$DSegNet) that intensively leverages knowledge sharing of these three tasks to promote learning. Specifically, it takes a random pair of CBCT and CT images as the input and manipulates the synthesis and segmentation via different decoding combinations from the disentangled latent layers. Then, by proposing various forms of consistency among the synthesized images and among segmented vertebrae, the learning is achieved without paired (i.e., anatomically identical) data. Finally, we stack 2D slices together and build 3D networks on top to obtain final 3D segmentation result. Extensive experiments on a large number of clinical CBCT (21,364) and CT (17,089) images show that the proposed A$^3$DSegNet performs significantly better than state-of-the-art competing methods trained independently for each task and, remarkably, it achieves an average Dice coefficient of 0.926 for unpaired 3D CBCT vertebra segmentation.
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs), a group of endocrine tumors arising in the pancreas, which are the second common type of pancreatic cancer, by checking the abdominal CT scans. To the best of our knowledge, this task has not been studied before as a computational task. To provide radiologists with tumor locations, we adopt a segmentation framework to classify CT volumes by checking if at least a sufficient number of voxels is segmented as tumors. To quantitatively analyze our method, we collect and voxelwisely label a new abdominal CT dataset containing $376$ cases with both arterial and venous phases available for each case, in which $228$ cases were diagnosed with PNETs while the remaining $148$ cases are normal, which is currently the largest dataset for PNETs to the best of our knowledge. In order to incorporate rich knowledge of radiologists to our framework, we annotate dilated pancreatic duct as well, which is regarded as the sign of high risk for pancreatic cancer. Quantitatively, our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$, which indicates a potential direction to achieve a clinical impact related to cancer diagnosis by earlier tumor detection.
Recently 3D volumetric organ segmentation attracts much research interest in medical image analysis due to its significance in computer aided diagnosis. This paper aims to address the pancreas segmentation task in 3D computed tomography volumes. We p ropose a novel end-to-end network, Globally Guided Progressive Fusion Network, as an effective and efficient solution to volumetric segmentation, which involves both global features and complicated 3D geometric information. A progressive fusion network is devised to extract 3D information from a moderate number of neighboring slices and predict a probability map for the segmentation of each slice. An independent branch for excavating global features from downsampled slices is further integrated into the network. Extensive experimental results demonstrate that our method achieves state-of-the-art performance on two pancreas datasets.
We present a joint graph convolution-image convolution neural network as our submission to the Brain Tumor Segmentation (BraTS) 2021 challenge. We model each brain as a graph composed of distinct image regions, which is initially segmented by a graph neural network (GNN). Subsequently, the tumorous volume identified by the GNN is further refined by a simple (voxel) convolutional neural network (CNN), which produces the final segmentation. This approach captures both global brain feature interactions via the graphical representation and local image details through the use of convolutional filters. We find that the GNN component by itself can effectively identify and segment the brain tumors. The addition of the CNN further improves the median performance of the model by 2 percent across all metrics evaluated. On the validation set, our joint GNN-CNN model achieves mean Dice scores of 0.89, 0.81, 0.73 and mean Hausdorff distances (95th percentile) of 6.8, 12.6, 28.2mm on the whole tumor, core tumor, and enhancing tumor, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا