ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-mode fiber coupling with a M-SPGD algorithm for long-range quantum communications

147   0   0.0 ( 0 )
 نشر من قبل KuiXing Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Satellite-based quantum communication is a promising approach for realizing global-scale quantum networks. For free-space quantum channel, single-mode fiber coupling is particularly important for improving signal-to-noise ratio of daylight quantum key distribution (QKD) and compatibility with standard fiber-based QKD. However, achieving a highly efficient and stable single-mode coupling efficiency under strong atmospheric turbulence remains experimentally challenging. Here, we develop a single-mode receiver with an adaptive optics (AO) system based on a modal version of the stochastic parallel gradient descent (M-SPGD) algorithm and test its performance over an 8 km urban terrestrial free-space channel. Under strong atmospheric turbulence, the M-SPGD AO system obtains an improvement of about 3.7 dB in the single-mode fiber coupling efficiency and a significant suppression of fluctuation, which can find its applications in free-space long-range quantum communications.

قيم البحث

اقرأ أيضاً

Future quantum technology relies crucially on building quantum networks with high fidelity. To achieve this challenging goal, it is of utmost importance to connect single quantum systems in a way such that their emitted single-photons overlap with th e highest possible degree of coherence. This requires perfect mode overlap of the emitted light of different emitters, which necessitates the use of single mode fibers. Here we present an advanced manufacturing approach to accomplish this task: we combine 3D printed complex micro-optics such as hemispherical and Weierstrass solid immersion lenses as well as total internal reflection solid immersion lenses on top of single InAs quantum dots with 3D printed optics on single mode fibers and compare their key features. Interestingly, the use of hemispherical solid immersion lenses further increases the localization accuracy of the emitters to below 1 nm when acquiring micro-photoluminescence maps. The system can be joined together and permanently fixed. This integrated system can be cooled by dipping into liquid helium, by a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows, as all access is through the integrated single mode fiber. We identify the ideal optical designs and present experiments that prove excellent high-rate single-photon emission by high-contrast Hanbury Brown and Twiss experiments.
369 - Chao Yu , Jiawei Qiu , Haiyun Xia 2018
We present a compact and lightweight 1.5 {mu}m lidar using a free-running single-photon detector (SPD) based on a multi-mode fiber (MMF) coupling InGaAs/InP negative feedback avalanche diode. The ultimate light detection sensitivity of SPD highly red uces the power requirement of laser, whilst the enhanced collection efficiency due to MMF coupling significantly reduces the volume and weight of telescopes. We develop a specific algorithm for the corrections of errors caused by the SPD and erbium-doped fiber amplifier to extract accurate backscattering signals. We also perform a comparison between single-mode fiber (SMF) coupling and MMF coupling in the lidar receiver, and the results show that the collection efficiency with MMF coupling is five times higher than SMF coupling. In order to validate the functionality, we use the lidar system for the application of cloud detection. The lidar system exhibits the ability to detect both the cloud base height and the thickness of multi-layer clouds to an altitude of 12 km with a temporal resolution of 1 s and a spatial resolution of 15 m. Due to the advantages of compactness and lightweight, our lidar system can be installed on unmanned aerial vehicles for wide applications in practice.
Quantum key distribution (QKD) is one of the most practical applications in quantum information processing, which can generate information-theoretical secure keys between remote parties. With the help of the wavelength-division multiplexing technique , QKD has been integrated with the classical optical communication networks. The wavelength-division multiplexing can be further improved by the mode-wavelength dual multiplexing technique with few-mode fiber (FMF), which has additional modal isolation and large effective core area of mode, and particularly is practical in fabrication and splicing technology compared with the multi-core fiber. Here, we present for the first time a QKD implementation coexisting with classical optical communication over weakly-coupled FMF using all-fiber mode-selective couplers. The co-propagation of QKD with one 100 Gbps classical data channel at -2.60 dBm launched power is achieved over 86 km FMF with 1.3 kbps real-time secure key generation. Compared with single-mode fiber, the average Raman noise in FMF is reduced by 86% at the same fiber-input power. Our work implements an important approach to the integration between QKD and classical optical communication and previews the compatibility of quantum communications with the next-generation mode division multiplexing networks
We report on theoretical and experimental demonstration of high-efficiency coupling of two-photon entangled states produced in the nonlinear process of spontaneous parametric down conversion into a single-mode fiber. We determine constraints for the optimal coupling parameters. This result is crucial for practical implementation of quantum key distribution protocols with entangled states.
Time crystals correspond to a phase of matter where time-translational symmetry (TTS) is broken. Up to date, they are well studied in open quantum systems, where external drive allows to break discrete TTS, ultimately leading to Floquet time crystals . At the same time, genuine time crystals for closed quantum systems are believed to be impossible. In this study we propose a form of a Hamiltonian for which the unitary dynamics exhibits the time crystalline behavior and breaks continuous TTS. This is based on spin-1/2 many-body Hamiltonian which has long-range multispin interactions in the form of spin strings, thus bypassing previously known no-go theorems. We show that quantum time crystals are stable to local perturbations at zero temperature. Finally, we reveal the intrinsic connection between continuous and discrete TTS, thus linking the two realms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا