ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric dipole response of low-lying excitations in the two-neutron halo nucleus $boldsymbol{^{29}}$F

120   0   0.0 ( 0 )
 نشر من قبل Jes\\'us Casal
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The neutron-rich $^{28,29}$F isotopes have been recently studied via knockout and interaction cross-section measurements. The $2n$ halo in $^{29}$F has been linked to the occupancy of $pf$ intruder configurations. We investigate bound and continuum states in $^{29}$F, focusing on the $E1$ response of low-lying excitations and the effect of dipole couplings on nuclear reactions. $^{29}text{F}$ ($^{27}text{F}+n+n$) wave functions are built within the hyperspherical harmonics formalism, and reaction cross sections are calculated using the Glauber theory. Continuum states and $B(E1)$ transition probabilities are described in a pseudostate approach using the analytical THO basis. The corresponding structure form factors are used in CDCC calculations to describe low-energy scattering. Parity inversion in $^{28}$F leads to a $^{29}$F ground state characterized by 57.5% of $(p_{3/2})^2$ intruder components, a strong dineutron configuration, and an increase of the matter radius with respect to the core radius of $Delta R=0.20$ fm. Glauber-model calculations for a carbon target at 240 MeV/nucleon provide a total reaction cross section of 1370 mb, in agreement with recent data. The model produces also a barely bound excited state corresponding to a quadrupole excitation. $B(E1)$ calculations into the continuum yield a total strength of 1.59 e$^2$fm$^2$ up to 6 MeV, and the $E1$ distribution exhibits a resonance at $approx$ 0.85 MeV. Results using a standard shell-model order for $^{28}$F lead to a considerable reduction of the $B(E1)$ distribution. The four-body CDCC calculations for $^{29}text{F}+^{120}text{Sn}$ around the Coulomb barrier are dominated by dipole couplings, which totally cancel the Fresnel peak in the elastic cross section. These results are consistent with a two-neutron halo and may guide future experimental campaigns.

قيم البحث

اقرأ أيضاً

Lying at the lower edge of the `island of inversion, neutron-rich Fluorine isotopes ($^{29-31}$F) provide a curious case to study the configuration mixing in this part of the nuclear landscape. Recent studies have suggested that a prospective two-neu tron halo in the dripline nucleus $^{31}$F could be linked to the occupancy of the $pf$ intruder configurations. Focusing on configuration mixing, matter radii and neutron-neutron ($nn$) correlations in the ground-state of $^{31}$F, we explore various scenarios to analyze its possible halo nature as well as the low-lying electric dipole ($E$1) response within a three-body approach. We use an analytical, transformed harmonic oscillator basis under the aegis of a hyperspherical formalism to construct the ground state three-body wave function of $^{31}$F. The $^{31}$F ground-state configuration mixing and its matter radius are computed for different choices of the $^{30}$F structure coupled to the valence neutron. The admixture of {$p_{3/2}$, $d_{3/2}$, and $f_{7/2}$} components is found to play an important role, favouring the dominance of inverted configurations with dineutron spreads for two-neutron halo formation. The increase in matter radius with respect to the core radius, $Delta r geqslant$ 0.30 fm and the dipole distributions along with the integrated $B(E1)$ strengths of $geqslant$ 2.6 $e^2$fm$^2$ are large enough to be compatible with other two-neutron halo nuclei. Three-body results for $^{31}$F indicate a large spatial extension in its ground state due to the inversion of the energy levels of the normal shell model scheme. The increase is augmented by and is proportional to the extent of the $p_{3/2}$ component in the wave function. Additionally, the enhanced dipole distributions and large $B(E1)$ strengths all point to the two-neutron halo character of $^{31}$F.
We report the measurement of reaction cross sections ($sigma_R^{rm ex}$) of $^{27,29}$F with a carbon target at RIKEN. The unexpectedly large $sigma_R^{rm ex}$ and derived matter radius identify $^{29}$F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the $2p_{3/2}$ orbital, thereby vanishing the shell closure associated with the neutron number $N = 20$. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of $^{27}$F but are challenged for $^{29}$F.
Background$colon$ The $^{29}$F system is located at the lower-N boundary of the island of inversion and is an exotic, weakly bound system. Little is known about this system beyond its two-neutron separation energy ($S_{2n}$) with large uncertainties. A similar situation is found for the low-lying spectrum of its unbound binary subsystem $^{28}$F. Purpose$colon$ To investigate the configuration mixing, matter radius and neutron-neutron correlations in the ground state of $^{29}$F within a three-body model, exploring the possibility of $^{29}$F to be a two-neutron halo nucleus. Method$colon$ The $^{29}$F ground-state wave function is built within the hyperspherical formalism by using an analytical transformed harmonic oscillator basis. The Gogny-Pires-Tourreil (GPT) nn interaction with central, spin-orbit and tensor terms is employed in the present calculations, together with different core$+n$ potentials constrained by the available experimental information on $^{28}$F. Results$colon$ The $^{29}$F ground-state configuration mixing and its matter radius are computed for different choices of the $^{28}$F structure and $S_{2n}$ value. The admixture of d-waves with pf components are found to play an important role, favoring the dominance of dineutron configurations in the wave function. Our computed radii show a mild sensitivity to the $^{27}$F$+n$ potential and $S_{2n}$ values. The relative increase of the matter radius with respect to the $^{27}$F core lies in the range 0.1-0.4 fm depending upon these choices. Conclusions$colon$ Our three-body results for $^{29}$F indicate the presence of a moderate halo structure in its ground state, which is enhanced by larger intruder components. This finding calls for an experimental confirmation.
Isospin properties of dipole excitations in 74 Ge are investigated using the ({alpha},{alpha}{gamma}) reaction and compared to ({gamma},{gamma}) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the s cenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, and the other at high energy, excited only by the electromagnetic probe. Relativistic quasiparticle time blocking approximation (RQTBA) calculations show a reduction in the isoscalar E1 strength with an increase in excitation energy, which is consistent with the measurement.
The electric dipole strength in 120Sn has been extracted from proton inelastic scattering experiments at E_p = 295 MeV and at forward angles including 0 degree. Below neutron threshoild it differs from the results of a 120Sn(gamma,gamma) experiment a nd peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and is more than three times larger than what is observed with the (gamma,gamma) reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1- states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا