ترغب بنشر مسار تعليمي؟ اضغط هنا

The Ciliated Structure as a Particle Detector

67   0   0.0 ( 0 )
 نشر من قبل Elie Wandersman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To mimic the mechanical response of passive biological cilia in complex fluids, we study the bending dynamics of an anchored elastic fiber submitted to a dilute granular suspension under shear. We show that the bending fluctuations of the fiber accurately encode minute variations of the granular suspension concentration. Indeed, besides the stationary bending induced by the continuous phase flow, the passage of each single particle induces an additional deflection. We demonstrate that the dominant particle/fiber interaction arises from direct contacts of the particles with the fiber and we propose a simple elastohydrodynamics model to predict their amplitude. Our results shed light on the extreme mechanical sensitivity of biological cilia to detect the presence of solid particles in their vicinity and bring a physical framework to describe their dynamics in particulate flows.

قيم البحث

اقرأ أيضاً

We show using theory and experiments that a small particle moving along an elastic membrane through a viscous fluid is repelled from the membrane due to hydro-elastic forces. The viscous stress field produces an elastic disturbance leading to particl e-wave coupling. We derive an analytic expression for the particle trajectory in the lubrication limit, bypassing the construction of the detailed velocity and pressure fields. The normal force is quadratic in the parallel speed, and is a function of the tension and bending resistance of the membrane. Experimentally, we measure the normal displacement of spheres sedimenting along an elastic membrane and find quantitative agreement with the theoretical predictions with no fitting parameters. We experimentally demonstrate the effect to be strong enough for particle separation and sorting. We discuss the significance of these results for bio-membranes and propose our model for membrane elasticity measurements.
We derive a mobility tensor for many cylindrical objects embedded in a viscous sheet. This tensor guarantees a positive dissipation rate for any configuration of particles and forces, analogously to the Rotne-Prager-Yamakawa tensor for spherical part icles in a three-dimensional viscous fluid. We test our result for a ring of radially driven particles, demonstrating the positive-definite property at all particle densities. The derived tensor can be utilized in Brownian Dynamics simulations with hydrodynamic interactions for such systems as proteins in biomembranes and inclusions in free-standing liquid films.
85 - Sebastian Rode , Jens Elgeti , 2021
The dynamics and motion of multi-ciliated microswimmers with a spherical body and a small number N (with 5 < N < 60) of cilia with length comparable to the body radius, is investigated by mesoscale hydrodynamics simulations. A metachronal wave is imp osed for the cilia beat, for which the wave vector has both a longitudinal and a latitudinal component. The dynamics and motion is characterized by the swimming velocity, its variation over the beat cycle, the spinning velocity around the main body axis, as well as the parameters of the helical trajectory. Our simulation results show that the microswimmer motion strongly depends on the latitudinal wave number and the longitudinal phase lag. The microswimmers are found to swim smoothly and usually spin around their own axis. Chirality of the metachronal beat pattern generically generates helical trajectories. In most cases, the helices are thin and stretched, i.e. the helix radius is about an order of magnitude smaller than the pitch. The rotational diffusion of the microswimmer is significantly smaller than the passive rotational diffusion of the body alone, which indicates that the extended cilia contribute strongly to the hydrodynamic radius. The swimming velocity vswim is found to increase with the cilia number N with a slightly sublinear power law, consistent with the behavior expected from the dependence of the transport velocity of planar cilia arrays on the cilia separation.
Inspired by recent experiments using synthetic microswimmers to manipulate droplets, we investigate the low-Reynolds-number locomotion of a model swimmer (a spherical squirmer) encapsulated inside a droplet of comparable size in another viscous fluid . Meditated solely by hydrodynamic interactions, the encaged swimmer is seen to be able to propel the droplet, and in some situations both remain in a stable co-swimming state. The problem is tackled using both an exact analytical theory and a numerical implementation based on boundary element method, with a particular focus on the kinematics of the co-moving swimmer and droplet in a concentric configuration, and we obtain excellent quantitative agreement between the two. The droplet always moves slower than a swimmer which uses purely tangential surface actuation but when it uses a particular combination of tangential and normal actuations, the squirmer and droplet are able to attain a same velocity and stay concentric for all times. We next employ numerical simulations to examine the stability of their concentric co-movement, and highlight several stability scenarios depending on the particular gait adopted by the swimmer. Furthermore, we show that the droplet reverses the nature of the far-field flow induced by the swimmer: a droplet cage turns a pusher swimmer into a puller, and vice versa. Our work sheds light on the potential development of droplets as self-contained carriers of both chemical content and self-propelled devices for controllable and precise drug deliveries.
We study the motion of a spherical particle driven by a constant volume force in a confined channel with a fixed square cross-section. The channel is filled with a mixture of two liquids under the effect of thermal fluctuations. We use the lattice Bo ltzmann method to simulate a fluctuating multicomponent fluid in the mixed-phase, and particle-fluid interactions are tuned to reproduce different wetting properties at the particle surface. The numerical set-up is first validated in the absence of thermal fluctuations; to this aim, we quantitatively compute the drift velocity at changing the particle radius and compare it with previous experimental and numerical data. In the presence of thermal fluctuations, we study the fluctuations in the particles velocity at changing thermal energy, applied force, particle size, and particle wettability. The importance of fluctuations with respect to the mean drift velocity is quantitatively assessed, especially in comparison to unconfined situations. Results show that confinement strongly enhances the importance of velocity fluctuations, which can be one order of magnitude larger than what expected in unconfined domains. The observed findings underscore the versatility of the lattice Boltzmann simulations in concrete applications involving the motion of colloidal particles in a highly confined environment in the presence of thermal fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا