ﻻ يوجد ملخص باللغة العربية
Mixed-SCORE is a recent approach for mixed membership community detection proposed by Jin et al. (2017) which is an extension of SCORE (Jin, 2015). In the note Jin et al. (2018), the authors propose SCORE+ as an improvement of SCORE to handle with weak signal networks. In this paper, we propose a method called Mixed-SCORE+ designed based on the Mixed-SCORE and SCORE+, therefore Mixed-SCORE+ inherits nice properties of both Mixed-SCORE and SCORE+. In the proposed method, we consider K+1 eigenvectors when there are K communities to detect weak signal networks. And we also construct vertices hunting and membership reconstruction steps to solve the problem of mixed membership community detection. Compared with several benchmark methods, numerical results show that Mixed-SCORE+ provides a significant improvement on the Polblogs network and two weak signal networks Simmons and Caltech, with error rates 54/1222, 125/1137 and 94/590, respectively. Furthermore, Mixed-SCORE+ enjoys excellent performances on the SNAP ego-networks.
Community detection has been well studied recent years, but the more realistic case of mixed membership community detection remains a challenge. Here, we develop an efficient spectral algorithm Mixed-ISC based on applying more than K eigenvectors for
The majority of real-world networks are dynamic and extremely large (e.g., Internet Traffic, Twitter, Facebook, ...). To understand the structural behavior of nodes in these large dynamic networks, it may be necessary to model the dynamics of behavio
We propose a novel parameterized family of Mixed Membership Mallows Models (M4) to account for variability in pairwise comparisons generated by a heterogeneous population of noisy and inconsistent users. M4 models individual preferences as a user-spe
With ever-increasing amounts of online information available, modeling and predicting individual preferences-for books or articles, for example-is becoming more and more important. Good predictions enable us to improve advice to users, and obtain a b
Community detection in network analysis is an attractive research area recently. Here, under the degree-corrected mixed membership (DCMM) model, we propose an efficient approach called mixed regularized spectral clustering (Mixed-RSC for short) based