ﻻ يوجد ملخص باللغة العربية
The Micali-Vazirani (MV) algorithm for maximum cardinality matching in general graphs, which was published in 1980 cite{MV}, remains to this day the most efficient known algorithm for the problem. This paper gives the first complete and correct proof of this algorithm. Central to our proof are some purely graph-theoretic facts, capturing properties of minimum length alternating paths; these may be of independent interest. An attempt is made to render the algorithm easier to comprehend.
We propose a weighted common subgraph (WCS) matching algorithm to find the most similar subgraphs in two labeled weighted graphs. WCS matching, as a natural generalization of the equal-sized graph matching or subgraph matching, finds wide application
The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, w
The minimum degree algorithm is one of the most widely-used heuristics for reducing the cost of solving large sparse systems of linear equations. It has been studied for nearly half a century and has a rich history of bridging techniques from data st
We design new serial and parallel approximation algorithms for computing a maximum weight $b$-matching in an edge-weighted graph with a submodular objective function. This problem is NP-hard; the new algorithms have approximation ratio $1/3$, and are
In a minimum cost submodular cover problem (MinSMC), given a monotone non-decreasing submodular function $fcolon 2^V rightarrow mathbb{Z}^+$, a cost function $c: Vrightarrow mathbb R^{+}$, an integer $kleq f(V)$, the goal is to find a subset $Asubset