ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitation energy and angular momentum dependence of the nuclear level density parameter around A$approx $110

60   0   0.0 ( 0 )
 نشر من قبل Pratap Roy
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron kinetic energy spectra in coincidence with low-energy $gamma $-ray multiplicities have been measured around $Aapprox $ 110 in the $^{16}$O, $^{20}$Ne + $^{93}$Nb reactions in a compound nuclear excitation energy range of $approx $ 90 - 140 MeV. The excitation energy (temperature) and angular momentum (spin) dependence of the inverse level density parameter $k$ has been investigated by comparing the experimental data with statistical Hauser-Feshbach calculation. In contrast to the available systematic in this mass region, the inverse level density parameter showed an appreciable increase as a function of the excitation energy. The extracted $k$-values at different angular momentum regions, corresponding to different $gamma $-multiplicities also showed an overall increase with the average nuclear spins. The experimental results have been compared with a microscopic statistical-model calculation and found to be in reasonable agreement with the data. The results provide useful information to understand the variation of nuclear level density at high temperature and spins.



قيم البحث

اقرأ أيضاً

The isoscaling is investigated using the fragment yield data from fully reconstructed quasi-projectiles observed in peripheral collisions of 28Si with 124,112Sn at projectile energies 30 and 50 MeV/nucleon. The excitation energy dependence of the iso scaling parameter beta_prime is observed which is independent of beam energy. For a given quasi-projectile produced in reactions with different targets no isoscaling is observed. The isoscaling thus reflects the level of N/Z-equilibration in reactions with different targets represented by the initial quasi-projectile samples. The excitation energy dependence of the isoscaling parameter beta_prime, corrected for the trivial 1/T temperature dependence, does not follow the trend of the homogeneous system above 4 MeV/nucleon thus possibly signaling the onset of separation into isospin asymmetric dilute and isospin symmetric dense phase.
The explicit density (rho) dependence in the coupling coefficients of the non-relativistic nuclear energy-density functional (EDF) encodes effects of three-nucleon forces and dynamical correlations. The necessity for a coupling coefficient in the for m of a small fractional power of rho is empirical and the power often chosen arbitrarily. Consequently, precision-oriented parameterisations risk overfitting and loss of predictive power. Observing that the Fermi momentum kF~rho^1/3 is a key variable in Fermi systems, we examine if a power hierarchy in kF can be inferred from the properties of homogeneous matter in a domain of densities which is relevant for nuclear structure and neutron stars. For later applications we want to determine an EDF that is of good quality but not overtrained. We fit polynomial and other functions of rho^1/3 to existing microscopic calculations of the energy of symmetric and pure neutron matter and analyze the fits. We select a form and parameter set which we found robust and examine the parameters naturalness and the resulting extrapolations. A statistical analysis confirms that low-order terms like rho^1/3 and rho^2/3 are the most relevant ones. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one rho^a terms in non-relativistic EDFs. The EDF we propose accommodates adopted properties of nuclear matter near saturation. Importantly, its extrapolation to dilute or asymmetric matter reproduces a range of existing microscopic results, to which it has not been fitted. It also predicts neutron-star properties consistent with observations. The coefficients display naturalness. Once determined for homogeneous matter, EDFs of the present form can be mapped onto Skyrme-type ones for use in nuclei. The statistical analysis can be extended to higher orders and for different ab initio calculations.
The response function approach is proposed to include vibrational state in calculation of level density. The calculations show rather strong dependence of level density on the relaxation times of collective state damping.
We present a new measurement of the energy dependence of nuclear transparency from AGS experiment E850, performed using the EVA solenoidal spectrometer, upgraded since 1995. Using a secondary beam from the AGS accelerator, we simultaneously measured $pp$ elastic scattering from hydrogen and $(p,2p)$ quasi-elastic scattering in carbon at incoming momenta of 5.9, 8.0, 9.0, 11.7 and 14.4 GeV/c. This incident momentum range corresponds to a $Q^{2}$ region between 4.8 and 12.7 (GeV/c)$^{2}$. The detector allowed us to do a complete kinematic analysis for the center-of-mass polar angles in the range $85^{circ}-90^{circ}$. We report on the measured variation of the nuclear transparency with energy and compare the new results with previous measurements.
We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the Color Glass Condensate (CGC) picture. We find that the angular momentum s hortly after the collision (up to times ~ 1/Q_s, where Q_s is the saturation scale) is carried by the beta-type flow of the initial classical gluon field, introduced by some of us earlier. beta^i ~ mu_1 nabla^i mu_2 - mu_2 nabla^i mu_1 (i=1,2) describes the rapidity-odd transverse energy flow and emerges from Gauss Law for gluon fields. Here mu_1 and mu_2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using AdS/CFT techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1/Q_s, is |dL_2/d eta| ~ R_A/Q_s^3 epsilon_0/2 at midrapidity, where R_A is the nuclear radius, and epsilon_0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g. for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا