ﻻ يوجد ملخص باللغة العربية
A thermal atomic ensemble-based laser source with superior frequency stability is proposed that relies on the accumulated contributions from an abundance of nonzero-transverse-velocity atomic ensembles. Compared with the traditional case in which only atoms with near-zero transverse velocities are utilized, the amplitude of the optical Ramsey fringes for a thermal calcium beam can be dramatically enhanced by three orders of magnitude or more, thus, the signal-to-noise ratio can be improved 33-fold. Based on the recent results of atomic interferometry-based laser stabilization, a quantum projection noise-limited frequency instability less than 2E-17/tau^0.5 is feasible. Such an ultrastable laser has promising applications in diverse areas, including metrology and astronomy.
Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capabili
The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we
We demonstrate Ramsey-Borde (RB) atom interferometry for high performance laser stabilization with fractional frequency instability $<2 times 10^{-16}$ for timescales between 10 and 1000s. The RB spectroscopy laser interrogates two counterpropagating
There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of todays leading
We demonstrate how to use feedback to control the internal states of trapped coherent ensembles of two-level atoms, and to protect a superposition state against the decoherence induced by a collective noise. Our feedback scheme is based on weak optic