ترغب بنشر مسار تعليمي؟ اضغط هنا

Causality in the shock wave/turbulent boundary layer interaction

68   0   0.0 ( 0 )
 نشر من قبل Kenzo Sasaki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanisms governing the low-frequency unsteadiness in the shock wave/turbulent boundary layer interaction at Mach 2 are considered. The investigation is conducted based on the numerical database issued from large-eddy simulations covering approximately 300 cycles of the low-frequency shock fluctuations. The evaluation of the spectrum in the interaction zone indicates that the broadband low-frequency unsteadiness is predominantly two-dimensional, and can be isolated via spanwise averaging. Empirically derived transfer functions are computed using the averaged flow field, and indicate the occurrence of a feedback mechanism between downstream flow regions and shock fluctuations. The transfer functions are also used as an estimation tool to predict the shock motion accurately; for the largest streamwise separation between input and output signals, correlations above 0.6 are observed between predicted and LES data. Computation of spectral proper orthogonal decomposition (SPOD) modes confirms the existence of upstream traveling waves in the leading spectral mode. Finally, the spectral modes obtained using selected flow regions downstream of the shock enable the reconstruction of a significant portion of the energy in the interaction zone. The current results shed further light on the physical mechanisms driving the shock motion, pointing towards a causal behavior between downstream areas and the characteristic unsteady fluctuations at the approximate shock position.

قيم البحث

اقرأ أيضاً

The present numerical investigation uses well-resolved large-eddy simulations to study the low-frequency unsteady motions observed in shock-wave/turbulent-boundary-layer interactions. Details about the numerical aspects of the simulations and the sub sequent data analysis can be found in three papers by the authors (Theo. Comput. Fluid Dyn., 23:79--107 (2009); Shock Waves, 19(6):469--478 (2009) and J. of Fluid Mech. (2011)). The fluid dynamics video illustrates the complexity of the interaction between a Mach 2.3 supersonic turbulent boundary layer and an oblique shock wave generated by a 8-degree wedge angle. The first part of the video highlights the propagation of disturbances along the reflected shock due to the direct perturbation of the shock foot by turbulence structures from the upstream boundary layer. The second part of the video describes the observed block-like back-and-forth motions of the reflected shock, focusing on timescales about two orders of magnitude longer than the ones shown in the first part of video. This gives a visual impression of the broadband and energetically-significant peak in the wall-pressure spectrum at low frequencies. The background blue-white colouring represents the temperature field (with white corresponding to hot) and one can clearly appreciate why such low-frequency shock motions can lead to reduced fatigue lifetimes and is detrimental to aeronautical applications.
This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_tau approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would require a camera and laser that moves with the flow, effectively `chasing eddies as they advect downstream.
We perform direct numerical simulations of rotating Rayleigh--Benard convection of fluids with low ($Pr=0.1$) and high ($Pr=5$) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demon strate the presence of an upscale transfer of kinetic energy that leads to the development of domain-filling vortical structures. Sufficiently strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow, despite the formation of plume-like vertical disturbances promoted by so-called Ekman pumping from the viscous boundary layer.
Three-dimensional particle tracking experiments were conducted in a turbulent boundary layer with friction Reynolds number $Re_tau$ of 700 and 1300. Two finite size spheres with specific gravities of 1.003 (P1) and 1.050 (P2) and diameters of 60 and 120 wall units were released individually from rest on a smooth wall. The spheres were marked with dots all over the surface to monitor their translation and rotation via high-speed stereoscopic imaging. The spheres accelerated strongly after release over streamwise distances of one boundary layer thickness before approaching an approximate terminal velocity. Initially, sphere P1, which had Reynolds numbers $Re_p$ of 800 and 1900, always lifts off from the wall. Similar behavior was observed occasionally for sphere P2 with initial $Re_p$ of 1900. The spheres that lifted off reached an initial peak in height before descending towards the wall. The sphere trajectories exhibited multiple behaviors including saltation, resuspension and sliding motion with small random bouncing depending on both $Re_tau$ and specific gravity. The lighter sphere at $Re_tau=1300$, which remained suspended above the wall during most of its trajectory, propagated with the fastest streamwise velocity. By contrast, the denser sphere at $Re_tau=700$, which mostly slid along the wall, propagated with the slowest streamwise velocity. After the spheres approached an approximate terminal velocity, many experienced additional lift-off events that were hypothesized to be driven by hairpins or coherent flow structures. Spheres were observed to rotate about all three coordinate axes. While the mean shear may induce a rotation about the spanwise axis, near-wall coherent structures and the spheres wake might drive the streamwise and wall-normal rotations. In all cases where the sphere propagates along the wall, sliding motion, rather than forward rolling motion, is dominant.
On the basis of (i) Particle Image Velocimetry data of a Turbulent Boundary Layer with large field of view and good spatial resolution and (ii) a mathematical relation between the energy spectrum and specifically modeled flow structures, we show that the scalings of the streamwise energy spectrum $E_{11}(k_{x})$ in a wavenumber range directly affected by the wall are determined by wall-attached eddies but are not given by the Townsend-Perry attached eddy models prediction of these spectra, at least at the Reynolds numbers $Re_{tau}$ considered here which are between $10^{3}$ and $10^{4}$. Instead, we find $E_{11}(k_{x}) sim k_{x}^{-1-p}$ where $p$ varies smoothly with distance to the wall from negative values in the buffer layer to positive values in the inertial layer. The exponent $p$ characterises the turbulence levels inside wall-attached streaky structures conditional on the length of these structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا