Supersymmetric Light Front Holographic QCD is a holographic theory, which not only describes the spectroscopy of mesons and baryons, but also predicts the existence and spectroscopy of tetraquarks. A discussion of the limitations of the theory is also presented.
In this article a systematic quantitative analysis of the isoscalar bosonic states is performed in the framework of supersymmetric light front holographic QCD. It is shown that the spectroscopy of the $eta$ and $h$ mesons can be well described if one
additional mass parameter -- which corresponds to the hard breaking of chiral $U(1)$ symmetry in standard QCD -- is introduced. The mass difference of the $eta$ and $eta$ isoscalar mesons is then determined by the strange quark mass content of the $eta$. The theory also predicts the existence of isoscalar tetraquarks which are bound states of diquarks and anti-diquarks. The candidates for these exotic isoscalar tetraquarks are identified. In particular, the $f_0(1500)$ is identified as isoscalar tetraquark; the predicted mass value 1.52 GeV agrees with the measured experimental value within the model uncertainties.
Many charmonium-like and bottomonium-like $XYZ$ resonances have been observed by the Belle, Babar, CLEO and BESIII collaborations in the past decade. They are difficult to fit in the conventional quark model and thus are considered as candidates of e
xotic hadrons, such as multi-quark states, meson molecules, and hybrids. In this talk, we first briefly introduce the method of QCD sum rules and then provide a short review of the mass spectra of the quarkonium-like tetraquark states and the heavy quarkonium hybrids in the QCD sum rules approach. Possible interpretations of the $XYZ$ resonances are briefly discussed.
We investigate the exotic $OmegaOmega$ dibaryon states with $J^P=0^+$ and $2^+$ in a molecular picture. We construct the scalar and tensor $Omega$$Omega$ molecular interpolating currents and calculate their masses within the method of QCD sum rules.
Our results indicate that the mass of the scalar dibaryon state is $m_{OmegaOmega, , 0^+}=(3.33pm0.22) ,unit$, which is about $15 ,mathrm{MeV}$ below the $2m_Omega$ threshold. This result suggests the existence of a loosely bound molecular state of the $J^P=0^+$ scalar $OmegaOmega$ dibaryon with a small binding energy around 15 MeV. The mass of the tensor dibaryon is predicted to be $m_{OmegaOmega,, 2^+}=(3.24pm0.23), mbox{GeV}$, which may imply a deeper molecular state of the tensor $OmegaOmega$ dibaryon than the scalar channel. These exotic strangeness $S=-6$ and doubly-charged $OmegaOmega$ dibaryon states may be identified in the heavy-ion collision processes.
Using the QCD sum rules we test if the charmonium-like structure Y(4260), observed in the $J/psipipi$ invariant mass spectrum, can be described with a $J/psi f_0(980)$ molecular current with $J^{PC}=1^{--}$. We consider the contributions of condensat
es up to dimension six and we work at leading order in $alpha_s$. We keep terms which are linear in the strange quark mass $m_s$. The mass obtained for such state is $m_{Y}=(4.67pm 0.09)$ GeV, when the vector and scalar mesons are in color singlet configurations. We conclude that the proposed current can better describe the Y(4660) state that could be interpreted as a $Psi(2S) f_0(980)$ molecular state. We also use different $J^{PC}=1^{--}$ currents to study the recently observed $Y_b(10890)$ state. Our findings indicate that the $Y_b(10890)$ can be well described by a scalar-vector tetraquark current.
In this talk I summarize the status of exotic mesons, including both theoretical expectations and experimental candidates. The current experimental candidates are ``spin-parity exotics; since these are most often considered possible hybrid mesons, th
e theoretical discussion will be mainly concerned with hybrids. The exotic meson candidates discussed are the surprisingly light pi_1(1400) and pi_1(1600).