ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

101   0   0.0 ( 0 )
 نشر من قبل Fatemeh Sadat Saleh
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the recent advances in multiple object tracking (MOT), achieved by joint detection and tracking, dealing with long occlusions remains a challenge. This is due to the fact that such techniques tend to ignore the long-term motion information. In this paper, we introduce a probabilistic autoregressive motion model to score tracklet proposals by directly measuring their likelihood. This is achieved by training our model to learn the underlying distribution of natural tracklets. As such, our model allows us not only to assign new detections to existing tracklets, but also to inpaint a tracklet when an object has been lost for a long time, e.g., due to occlusion, by sampling tracklets so as to fill the gap caused by misdetections. Our experiments demonstrate the superiority of our approach at tracking objects in challenging sequences; it outperforms the state of the art in most standard MOT metrics on multiple MOT benchmark datasets, including MOT16, MOT17, and MOT20.



قيم البحث

اقرأ أيضاً

One of the core components in online multiple object tracking (MOT) frameworks is associating new detections with existing tracklets, typically done via a scoring function. Despite the great advances in MOT, designing a reliable scoring function rema ins a challenge. In this paper, we introduce a probabilistic autoregressive generative model to score tracklet proposals by directly measuring the likelihood that a tracklet represents natural motion. One key property of our model is its ability to generate multiple likely futures of a tracklet given partial observations. This allows us to not only score tracklets but also effectively maintain existing tracklets when the detector fails to detect some objects even for a long time, e.g., due to occlusion, by sampling trajectories so as to inpaint the gaps caused by misdetection. Our experiments demonstrate the effectiveness of our approach to scoring and inpainting tracklets on several MOT benchmark datasets. We additionally show the generality of our generative model by using it to produce future representations in the challenging task of human motion prediction.
Multi-object tracking (MOT) is an essential task in the computer vision field. With the fast development of deep learning technology in recent years, MOT has achieved great improvement. However, some challenges still remain, such as sensitiveness to occlusion, instability under different lighting conditions, non-robustness to deformable objects, etc. To address such common challenges in most of the existing trackers, in this paper, a tracklet booster algorithm is proposed, which can be built upon any other tracker. The motivation is simple and straightforward: split tracklets on potential ID-switch positions and then connect multiple tracklets into one if they are from the same object. In other words, the tracklet booster consists of two parts, i.e., Splitter and Connector. First, an architecture with stacked temporal dilated convolution blocks is employed for the splitting position prediction via label smoothing strategy with adaptive Gaussian kernels. Then, a multi-head self-attention based encoder is exploited for the tracklet embedding, which is further used to connect tracklets into larger groups. We conduct sufficient experiments on MOT17 and MOT20 benchmark datasets, which demonstrates promising results. Combined with the proposed tracklet booster, existing trackers usually can achieve large improvements on the IDF1 score, which shows the effectiveness of the proposed method.
The task of multiple people tracking in monocular videos is challenging because of the numerous difficulties involved: occlusions, varying environments, crowded scenes, camera parameters and motion. In the tracking-by-detection paradigm, most approac hes adopt person re-identification techniques based on computing the pairwise similarity between detections. However, these techniques are less effective in handling long-term occlusions. By contrast, tracklet (a sequence of detections) re-identification can improve association accuracy since tracklets offer a richer set of visual appearance and spatio-temporal cues. In this paper, we propose a tracking framework that employs a hierarchical clustering mechanism for merging tracklets. To this end, tracklet re-identification is performed by utilizing a novel multi-stage deep network that can jointly reason about the visual appearance and spatio-temporal properties of a pair of tracklets, thereby providing a robust measure of affinity. Experimental results on the challenging MOT16 and MOT17 benchmarks show that our method significantly outperforms state-of-the-arts.
Most of Multiple Object Tracking (MOT) approaches compute individual target features for two subtasks: estimating target-wise motions and conducting pair-wise Re-Identification (Re-ID). Because of the indefinite number of targets among video frames, both subtasks are very difficult to scale up efficiently in end-to-end Deep Neural Networks (DNNs). In this paper, we design an end-to-end DNN tracking approach, Flow-Fuse-Tracker (FFT), that addresses the above issues with two efficient techniques: target flowing and target fusing. Specifically, in target flowing, a FlowTracker DNN module learns the indefinite number of target-wise motions jointly from pixel-level optical flows. In target fusing, a FuseTracker DNN module refines and fuses targets proposed by FlowTracker and frame-wise object detection, instead of trusting either of the two inaccurate sources of target proposal. Because FlowTracker can explore complex target-wise motion patterns and FuseTracker can refine and fuse targets from FlowTracker and detectors, our approach can achieve the state-of-the-art results on several MOT benchmarks. As an online MOT approach, FFT produced the top MOTA of 46.3 on the 2DMOT15, 56.5 on the MOT16, and 56.5 on the MOT17 tracking benchmarks, surpassing all the online and offline methods in existing publications.
Similarity learning has been recognized as a crucial step for object tracking. However, existing multiple object tracking methods only use sparse ground truth matching as the training objective, while ignoring the majority of the informative regions on the images. In this paper, we present Quasi-Dense Similarity Learning, which densely samples hundreds of region proposals on a pair of images for contrastive learning. We can directly combine this similarity learning with existing detection methods to build Quasi-Dense Tracking (QDTrack) without turning to displacement regression or motion priors. We also find that the resulting distinctive feature space admits a simple nearest neighbor search at the inference time. Despite its simplicity, QDTrack outperforms all existing methods on MOT, BDD100K, Waymo, and TAO tracking benchmarks. It achieves 68.7 MOTA at 20.3 FPS on MOT17 without using external training data. Compared to methods with similar detectors, it boosts almost 10 points of MOTA and significantly decreases the number of ID switches on BDD100K and Waymo datasets. Our code and trained models are available at http://vis.xyz/pub/qdtrack.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا