ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanics and energetics of electromembranes

85   0   0.0 ( 0 )
 نشر من قبل Benoit Roman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hadrien Bense




اسأل ChatGPT حول البحث

The recent discovery of electro-active polymers has shown great promises in the field of soft robotics, and was logically followed by experimental, numerical and theoretical developments. Most of these studies were concerned with systems entirely covered by electrodes. However, there is a growing interest for partially active polymers, in which the electrode covers only one part of the membrane. Indeed, such actuation can trigger buckling instabilities and so represents a route toward the control of 3D shapes. Here, we study theoretically the behaviour of such partially active electro-active polymer. We address two problems: (i) the electrostatic elastica including geometric non-linearities and partially electro-active strip using a variational approach. We propose a new interpretation of the equations of deformation, by drawing analogies with biological growth, in which the effect of the electric voltage is seen as a change in the reference stress-free state. (ii) we explain the nature of the distribution of electrostatic forces on this simple system, which is not trivial. In particular we find that edge effects are playing a major role in this problem.



قيم البحث

اقرأ أيضاً

73 - Leo Radzihovsky 2015
Motivated by the general problem of moving topological defects in an otherwise ordered state and specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening experiments in freely-suspended smectic-C films by Clar k, et al., I study the deformation, energetics and dynamics of moving vortices in an overdamped xy-model and show that their properties are significantly and qualitatively modified by the motion.
In this manuscript we describe the realization of a minimal hybrid microswimmer, composed of a ferromagnetic nanorod and a paramagnetic microsphere. The unbounded pair is propelled in water upon application of a swinging magnetic field that induces a periodic relative movement of the two composing elements, where the nanorod rotates and slides on the surface of the paramagnetic sphere. When taken together, the processes of rotation and sliding describe a finite area in the parameter space, which increases with the frequency of the applied field. We develop a theoretical approach and combine it with numerical simulations, which allow us to understand the dynamics of the propeller and explain the experimental observations. Furthermore, we demonstrate a reversal of the microswimmer velocity by varying the length of the nanorod, as predicted by the model. Finally, we determine theoretically and in experiments the Lighthills energetic efficiency of this minimal magnetic microswimmer.
The fundamental insight into Brownian motion by Einstein is that all substances exhibit continual fluctuations due to thermal agitation balancing with the frictional resistance. However, even at thermal equilibrium, biological activity can give rise to non-equilibrium fluctuations that cause ``active diffusion in living cells. Because of the non-stationary and non-equilibrium nature of such fluctuations, mean square displacement analysis, relevant only to a steady state ensemble, may not be the most suitable choice as it depends on the choice of the ensemble; hence, a new analytical method for describing active diffusion is desired. Here we discuss the stochastic energetics of a thermally fluctuating single active diffusion trajectory driven by non-thermal random forces. Heat dissipation, usually difficult to measure, can be estimated from the active diffusion trajectory; guidelines on the analysis such as criteria for the time resolution and driving force intensity are shown by a statistical test. This leads to the concept of an ``instantaneous diffusion coefficient connected to heat dissipation that may be used to analyse the activity and molecular transport mechanisms of living systems.
The nonequilibrium activity taking place in a living cell can be monitored with a tracer embedded in the medium. While microrheology experiments based on optical manipulation of such probes have become increasingly standard, we put forward a number o f experiments with alternative protocols that, we claim, will provide new insight into the energetics of active fluctuations. These are based on either performing thermodynamic--like cycles in control-parameter space, or on determining response to external perturbations of the confining trap beyond simple translation. We illustrate our proposals on an active itinerant Brownian oscillator modeling the dynamics of a probe embedded in a living medium.
We use computer simulations to study the cooling rate dependence of the stability and energetics of model glasses created at constant pressure conditions and compare the results with glasses formed at constant volume conditions. To examine the stabil ity, we determine the time it takes for a glass cooled and reheated at constant pressure to transform back into a liquid, $t_{mathrm{trans}}$, and calculate the stability ratio $S = t_{mathrm{trans}}/tau_alpha$, where $tau_alpha$ is the equilibrium relaxation time of the liquid. We find that, for slow enough cooling rates, cooling and reheating at constant pressure results in a larger stability ratio $S$ than for cooling and reheating at constant volume. We also compare the energetics of glasses obtained by cooling while maintaining constant pressure with those of glasses created by cooling from the same state point while maintaining constant volume. We find that cooling at constant pressure results in glasses with lower average potential energy and average inherent structure energy. We note that in model simulations of the vapor deposition process glasses are created under constant pressure conditions, and thus they should be compared to glasses obtained by constant pressure cooling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا