ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of lattice QCD+QED predictions for radiative leptonic decays of light mesons with experimental data

117   0   0.0 ( 0 )
 نشر من قبل Silvano Simula
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comparison of existing experimental data for the radiative leptonic decays $Ptoell u_ellgamma$, where $P=K$ or $pi$ and $ell=e$ or $mu$, from the KLOE, PIBETA, E787, ISTRA+ and OKA collaborations with theoretical predictions based on the recent non-perturbative determinations of the structure-dependent vector and axial-vector form factors, $F_V$ and $F_A$ respectively. These were obtained using lattice QCD+QED simulations at order $O(alpha_{mathrm{em}})$ in the electromagnetic coupling. We find good agreement with the KLOE data on $Kto e u_egamma$ decays from which the form factor $F^+=F_V+F_A$ can be determined. For $Ktomu u_mugamma$ decays we observe differences of up to 3,-,4 standard deviations at large photon energies between the theoretical predictions and the data from the E787, ISTRA+ and OKA experiments and similar discrepancies in some kinematical regions with the PIBETA experiment on radiative pion decays. A global study of all the kaon-decay data within the Standard Model results in a poor fit, largely because at large photon energies the KLOE and E787 data cannot be reproduced simultaneously in terms of the same form factor $F^+$. The discrepancy between the theoretical and experimental values of the form factor $F^-=F_V-F_A$ is even more pronounced. These observations motivate future improvements of both the theoretical and experimental determinations of the structure-dependent form factors $F^+$ and $F^-$, as well as further theoretical investigations of models of new physics which might for example, include possible flavor changing interactions beyond $V - A$ and/or non-universal corrections to the lepton couplings.

قيم البحث

اقرأ أيضاً

The measured rate for D_s -> l nu decays, where l is a muon or tau, is larger than the standard model prediction, which relies on lattice QCD, at the 3.8 sigma level. We discuss how robust the theoretical prediction is, and we show that the discrepan cy with experiment may be explained by a charged Higgs boson or a leptoquark.
The leading electromagnetic (e.m.) and strong isospin-breaking corrections to the $pi^+ to mu^+ u[gamma]$ and $K^+ to mu^+ u[gamma]$ leptonic decay rates are evaluated for the first time on the lattice. The results are obtained using gauge ensemble s produced by the European Twisted Mass Collaboration with $N_f = 2 + 1 + 1$ dynamical quarks. The relative leading-order e.m.~and strong isospin-breaking corrections to the decay rates are 1.53(19)% for $pi_{mu 2}$ decays and 0.24(10)% for $K_{mu 2}$ decays. Using the experimental values of the $pi_{mu 2}$ and $K_{mu 2}$ decay rates and updated lattice QCD results for the pion and kaon decay constants in isosymmetric QCD, we find that the Cabibbo-Kobayashi-Maskawa matrix element $ | V_{us}| = 0.22538(46)$, reducing by a factor of about $1.8$ the corresponding uncertainty in the Particle Data Group review. Our calculation of $|V_{us}|$ allows also an accurate determination of the first-row CKM unitarity relation $| V_{ud}|^2 + | V_{us}|^2 + | V_{ub}|^2 = 0.99988(46)$. Theoretical developments in this paper include a detailed discussion of how QCD can be defined in the full QCD+QED theory and an improved renormalisation procedure in which the bare lattice operators are renormalised non-perturbatively into the (modified) Regularization Independent Momentum subtraction scheme and subsequently matched perturbatively at $O(alpha_{em}alpha_s(M_W))$ into the W-regularisation scheme appropriate for these calculations.
We revisit QCD calculations of radiative heavy meson decay form factors by including the subleading power corrections from the twist-two photon distribution amplitude at next-to-leading-order in $alpha_s$ with the method of the light-cone sum rules ( LCSR). The desired hard-collinear factorization formula for the vacuum-to-photon correlation function with the interpolating currents for two heavy mesons is constructed with the operator-product-expansion technique in the presence of evanescent operators. Applying the background field approach, the higher twist corrections from both the two-particle and three-particle photon distribution amplitudes are further computed in the LCSR framework at leading-order in QCD, up to the twist-four accuracy. Combining the leading power point-like photon contribution at tree level and the subleading power resolved photon corrections from the newly derived LCSR, we update theory predictions for the nonperturbative couplings describing the electromagnetic decay processes of the heavy mesons $H^{ast , pm} to H^{pm} , gamma$, $H^{ast , 0} to H^{0} , gamma$, $H_s^{ast , pm} to H_s^{pm} , gamma$ (with $H=D, , B$). Furthermore, we perform an exploratory comparisons of our sum rule computations of the heavy-meson magnetic couplings with the previous determinations based upon different QCD approaches and phenomenological models.
131 - Stephan Narison 2015
We summarize recently improved results for the pseudoscalar [1,2] and vector [3] meson decay constants and their ratios from QCD spectral sum rules where N2LO + estimate of the N3LO PT and power corrections up to d< 6 dimensions have been included in the SVZ expansion. The optimal results based on stability criteria with respect to the variations of the Laplace/Moments sum rule variables, QCD continuum threshold and subtraction constant mu are compared with recent sum rules and lattice calculations. To understand the apparent tension between some recent results for f_B*/f_B, we present in Section 8 a novel extraction of this ratio from heavy quark effective theory (HQET) sum rules by including the normalization factor (M_b/M_B)^2 relating the pseudoscalar to the universal HQET correlators for finite b-quark and B-meson masses. We obtain f_B*/f_B=1.025(16) in good agreement with the one 1.016(16) from (pseudo)scalar sum rules in full QCD [3]. We complete the paper by including new improved estimates of the scalar, axial-vector and B^*_c meson decays constants (Sections 11-13). For further phenomenological uses, we attempt to extract a Global Average of different sum rules and lattice determinations of the decay constants which are summarized in Tables 2-6. We do not found any deviation of these SM results from the present data.
We study the exclusive semileptonic $B$-meson decays $Bto K(pi)ell^+ell^-$, $Bto K(pi) ubar u$, and $Btopitau u$, computing observables in the Standard model using the recent lattice-QCD results for the underlying form factors from the Fermilab Latti ce and MILC Collaborations. These processes provide theoretically clean windows into physics beyond the Standard Model because the hadronic uncertainties are now under good control for suitably binned observables. For example, the resulting partially integrated branching fractions for $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ outside the charmonium resonance region are 1-2$sigma$ higher than the LHCb Collaborations recent measurements, where the theoretical and experimental errors are commensurate. The combined tension is 1.7$sigma$. Combining the Standard-Model rates with LHCbs measurements yields values for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_{td}|=7.45{(69)}times10^{-3}$, $|V_{ts}|=35.7(1.5)times10^{-3}$, and $|V_{td}/V_{ts}|=0.201{(20)}$, which are compatible with the values obtained from neutral $B_{(s)}$-meson oscillations and have competitive uncertainties. Alternatively, taking the CKM matrix elements from unitarity, we constrain new-physics contributions at the electroweak scale. The constraints on the Wilson coefficients ${rm Re}(C_9)$ and ${rm Re}(C_{10})$ from $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ are competitive with those from $Bto K^* mu^+mu^-$, and display a 2.0$sigma$ tension with the Standard Model. Our predictions for $Bto K(pi) ubar u$ and $Btopitau u$ are close to the current experimental limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا