ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical abundances in Seyfert galaxies -- V. The discovery of shocked emission outside the AGN ionization axis

66   0   0.0 ( 0 )
 نشر من قبل Rogemar Andre Riffel
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present maps for the electron temperature in the inner kpc of three luminous Seyfert galaxies: Mrk 79, Mrk 348, and Mrk 607 obtained from Gemini GMOS-IFU observations at spatial resolutions of 110-280 pc. We study the distributions of electron temperature in active galaxies and find temperatures varying in the range from 8000 to >30000 K. Shocks due to gas outflows play an important role in the observed temperature distributions of Mrk 79 and Mrk 348, while standard photoionization models reproduce the derived temperature values for Mrk 607. In Mrk 79 and Mrk 348, we find direct evidence for shock-ionization with overall orientation orthogonal to the ionization axis, where shocks can be easily observed as the AGN radiation field is shielded by the nuclear dusty torus. This also indicates that even when the ionization cones are narrow, the shocks can be much wider-angle.



قيم البحث

اقرأ أيضاً

76 - Dors , O. L 2021
We derived a bi-dimensional calibration between the emission line ratios R23=([O II]3726+3729+[O II]4959+5007)/Hb, P=[([O II]4959+5007)/Hb]/R23 and the oxygen abundance relative to hydrogen (O/H) in the gas phase of Seyferts 1 and 2 nuclei. In view o f this, emission-line intensity ratios for a sample of objects taken from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) measured by the MPA/JHU group and direct estimates of O/H based on Te-method, adapted for AGNs, are considered. We find no variation of R23 observed along the radii of AGNs which shows that this line ratio is a good oxygen abundance (O/H) indicator for the class of objects considered in this work. The derived O/H = f(R23, P) relation produces O/H values similar to estimations via Te-method in a wide range of metallicities [8.0 < 12+log(O/H) < 9.2]. Conversely to star-forming regions in the high metallicity regime, R23 shows a positive correlation trend with O/H in AGNs. This indicates that the hardness of ionizing radiation is not affected by the metallicities in these objects or Narrow Line Regions (NLRs) are not significantly modified by changes in the Spectral Energy Distribution due to metallicity variations.
We investigate the discrepancy between oxygen abundance estimations for narrow-line regions (NLRs) of Active Galactic Nuclei (AGNs) type Seyfert 2 derived by using direct estimations of the electron temperature (Te-method) and those derived by using photoionization models. In view of this, observational emission-line ratios in the optical range (3000 < lambda(AA) < 7000) of Seyfert 2 nuclei compiled from the literature were reproduced by detailed photoionization models built with the Cloudy code. We find that the derived discrepancies are mainly due to the inappropriate use of the relations between temperatures of the low (t2) and high (t3) ionization gas zones derived for H II regions in AGN chemical abundance studies. Using a photoionization model grid, we derived a new expression for t2 as a function of t3 valid for Seyfert 2 nuclei. The use of this new expression in the AGN estimation of the O/H abundances based on Te-method produces O/H abundances slightly lower (about 0.2 dex) than those derived from detailed photoionization models. We also find that the new formalism for the Te-method reduces by about 0.4 dex the O/H discrepancies between the abundances obtained from strong emission-line calibrations and those derived from direct estimations.
We try to identify the nature of high redshift long Gamma-Ray Bursts (LGRBs) host galaxies by comparing the observed abundance ratios in the interstellar medium with detailed chemical evolution models accounting for the presence of dust. We compared measured abundance data from LGRB afterglow spectra to abundance patterns as predicted by our models for different galaxy types. We analysed in particular [X/Fe] abundance ratios (where X is C, N, O, Mg, Si, S, Ni, Zn) as functions of [Fe/H]. Different galaxies (irregulars, spirals, ellipticals) are, in fact, characterised by different star formation histories, which produce different [X/Fe] ratios (time-delay model). This allows us to identify the morphology of the hosts and to infer their age (i.e. the time elapsed from the beginning of star formation) at the time of the GRB events, as well as other important parameters. Relative to previous works, we use newer models in which we adopt updated stellar yields and prescriptions for dust production, accretion and destruction. We have considered a sample of seven LGRB host galaxies. Our results have suggested that two of them (GRB 050820, GRB 120815A) are ellipticals, two (GRB 081008, GRB 161023A) are spirals and three (GRB 050730, GRB 090926A, GRB 120327A) are irregulars. We also found that in some cases changing the initial mass function can give better agreement with the observed data. The calculated ages of the host galaxies span from the order of 10 Myr to little more than 1 Gyr.
We estimate chemical abundances and ionization parameters in the nuclear region of a sample of 143 galaxies from the Palomar Spectroscopic Survey, composed by Star-Forming Galaxies (87), Seyferts 2 (16) and LINERs (40) using the textsc{Hii-Chi-mistry } code. We also study for each spectral type the correlation of the derived quantities with other different properties of the host galaxies, such as morphology, stellar mass, luminosity and mass of their Supermassive Black Holes. The results obtained for Star-Forming Galaxies are used to check the soundness of our methodology. Then, we replicate a similar study for our sample of AGN, distinguishing between Seyferts 2 and LINERs. We report a saturation of Oxygen abundances for the nuclear regions of SFG. The correlations between chemical abundances and their host galaxy properties for SFG are in good agreement with previous studies. We find that Seyferts 2 present slightly higher chemical abundances but this result must be reexamined in larger samples of Seyfert galaxies. In contrast, we obtain lower chemical abundances for LINERs than for SFG. We confirm these relatively lower abundances for another sample of infrared luminous LINERs in the same stellar mass range. Our analysis of AGNs (both LINERs and Seyferts) shows that their host galaxy properties are not correlated with our estimated chemical abundances.
We compare the oxygen abundance (O/H) of the Narrow Line Regions (NLRs) of Seyfert 2 AGNs obtained through strong-line methods and from direct measurements of the electron temperature (Te-method). The aim of this study is to explore the effects of th e use of distinct methods on the range of metallicity and on the mass-metallicity relation of AGNs at low redshifts (z < 0.4). We used the Sloan Digital Sky Survey (SDSS) and NASA/IPAC Extragalactic Database (NED) to selected optical (3000 < A < 7000) emission line intensities of 463 confirmed Seyfert 2 AGNs. The oxygen abundance of the NLRs were estimated using the theoretical Storchi-Bergmann et al. calibrations, the semi-empirical N2O2 calibration, the bayesian Hii-Chi-mistry code and the Te-method. We found that the oxygen abundance estimations via the strong-line methods differ from each other up to ~0.8 dex, with the largest discrepancies in the low metallicity regime (12 + log(O/H) . 8.5). We confirmed that the Te-method underestimates the oxygen abundance in NLRs, producing unreal subsolar values. We did not find any correlation between the stellar mass of the host galaxies and the metallicity of their AGNs. This result is independent of the method used to estimate Z.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا