ﻻ يوجد ملخص باللغة العربية
Let $A$ be a quaternion algebra over a number field $F$, and $mathcal{O}$ be an $O_F$-order of full rank in $A$. Let $K$ be a quadratic field extension of $F$ that embeds into $A$, and $B$ be an $O_F$-order in $K$. Suppose that $mathcal{O}$ is a Bass order that is well-behaved at all the dyadic primes of $F$. We provide a necessary and sufficient condition for $B$ to be optimally spinor selective for the genus of $mathcal{O}$. This partially generalizes previous results on optimal (spinor) selectivity by C. Maclachlan [Optimal embeddings in quaternion algebras. J. Number Theory, 128(10):2852-2860, 2008] for Eichler orders of square-free levels, and independently by M. Arenas et al. [On optimal embeddings and trees. J. Number Theory, 193:91-117, 2018] and by J. Voight [Chapter 31, Quaternion algebras, volume 288 of Graduate Texts in Mathematics. Springer-Verlag, 2021] for Eichler orders of arbitrary levels.
We present two class number formulas associated to orders in totally definite quaternion algebras in the spirit of the Eichler class number formula. More precisely, let $F$ be a totally real number field, $D$ be a totally definite quaternion $F$-alge
We study a form of refined class number formula (resp. type number formula) for maximal orders in totally definite quaternion algebras over real quadratic fields, by taking into consideration the automorphism groups of right ideal classes (resp. unit
Given a newform f, we extend Howards results on the variation of Heegner points in the Hida family of f to a general quaternionic setting. More precisely, we build big Heegner points and big Heegner classes in terms of compatible families of Heegner
The question of embedding fields into central simple algebras $B$ over a number field $K$ was the realm of class field theory. The subject of embedding orders contained in the ring of integers of maximal subfields $L$ of such an algebra into orders i
In this paper we determine the number of endomorphism rings of superspecial abelian surfaces over a field $mathbb{F}_q$ of odd degree over $mathbb{F}_p$ in the isogeny class corresponding to the Weil $q$-number $pmsqrt{q}$. This extends earlier works