ترغب بنشر مسار تعليمي؟ اضغط هنا

Millimeter Wave Communications on Overhead Messenger Wire: Deep Reinforcement Learning-Based Predictive Beam Tracking

63   0   0.0 ( 0 )
 نشر من قبل Yusuke Koda
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses the feasibility of beam tracking against dynamics in millimeter wave (mmWave) nodes placed on overhead messenger wires, including wind-forced perturbations and disturbances caused by impulsive forces to wires. Our main contribution is to answer whether or not historical positions and velocities of a mmWave node is useful to track directional beams given the complicated on-wire dynamics. To this end, we implement beam-tracking based on deep reinforcement learning (DRL) to learn the complicated relationships between the historical positions/velocities and appropriate beam steering angles. Our numerical evaluations yielded the following key insights: Against wind perturbations, an appropriate beam-tracking policy can be learned from the historical positions and velocities of a node. Meanwhile, against impulsive forces to the wire, the use of the position and velocity of the node is not necessarily sufficient owing to the rapid displacement of the node. To solve this, we propose to take advantage of the positional interaction on the wire by leveraging the positions/velocities of several points on the wire as state information in DRL. The results confirmed that this results in the avoidance of beam misalignment, which would not be possible by using only the position/velocity of the node.



قيم البحث

اقرأ أيضاً

Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional to the codebook size. To improve the efficiency of beam tracking, we propose a beam tracking scheme based on the channel fingerprint database, which comprises mappings between statistical beamforming gains and user locations. The scheme tracks user movement by utilizing the trained beam configurations and estimating the gains of beam configurations that are not trained. Simulations show that the proposed scheme achieves significant beamforming performance gains over existing beam tracking schemes.
Millimeter wave (mmWave) beam-tracking based on machine learning enables the development of accurate tracking policies while obviating the need to periodically solve beam-optimization problems. However, its applicability is still arguable when traini ng-test gaps exist in terms of environmental parameters that affect the node dynamics. From this skeptical point of view, the contribution of this study is twofold. First, by considering an example scenario, we confirm that the training-test gap adversely affects the beam-tracking performance. More specifically, we consider nodes placed on overhead messenger wires, where the node dynamics are affected by several environmental parameters, e.g, the wire mass and tension. Although these are particular scenarios, they yield insight into the validation of the training-test gap problems. Second, we demonstrate the feasibility of textit{zero-shot adaptation} as a solution, where a learning agent adapts to environmental parameters unseen during training. This is achieved by leveraging a robust adversarial reinforcement learning (RARL) technique, where such training-and-test gaps are regarded as disturbances by adversaries that are jointly trained with a legitimate beam-tracking agent. Numerical evaluations demonstrate that the beam-tracking policy learned via RARL can be applied to a wide range of environmental parameters without severely degrading the received power.
We experimentally demonstrate a novel scheme of power loading based on portfolio theory for millimeter-wave small-cell densification. By exploiting the statistical characteristics of interference, this approach improves the average throughput by 91% and reduces the variance.
Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications, unstable vehicle-to-vehicle (V2V) links and high signalling overhead of centralized resource al location approaches become bottlenecks. In this paper, we investigate a joint optimization problem of transmission mode selection and resource allocation for cellular V2X communications. In particular, the problem is formulated as a Markov decision process, and a deep reinforcement learning (DRL) based decentralized algorithm is proposed to maximize the sum capacity of vehicle-to-infrastructure users while meeting the latency and reliability requirements of V2V pairs. Moreover, considering training limitation of local DRL models, a two-timescale federated DRL algorithm is developed to help obtain robust model. Wherein, the graph theory based vehicle clustering algorithm is executed on a large timescale and in turn the federated learning algorithm is conducted on a small timescale. Simulation results show that the proposed DRL-based algorithm outperforms other decentralized baselines, and validate the superiority of the two-timescale federated DRL algorithm for newly activated V2V pairs.
154 - Qing Xue , Xuming Fang , 2017
For future networks (i.e., the fifth generation (5G) wireless networks and beyond), millimeter-wave (mmWave) communication with large available unlicensed spectrum is a promising technology that enables gigabit multimedia applications. Thanks to the short wavelength of mmWave radio, massive antenna arrays can be packed into the limited dimensions of mmWave transceivers. Therefore, with directional beamforming (BF), both mmWave transmitters (MTXs) and mmWave receivers (MRXs) are capable of supporting multiple beams in 5G networks. However, for the transmission between an MTX and an MRX, most works have only considered a single beam, which means that they do not make full potential use of mmWave. Furthermore, the connectivity of single beam transmission can easily be blocked. In this context, we propose a single-user multi-beam concurrent transmission scheme for future mmWave networks with multiple reflected paths. Based on spatial spectrum reuse, the scheme can be described as a multiple-input multiple-output (MIMO) technique in beamspace (i.e., in the beam-number domain). Moreover, this study investigates the challenges and potential solutions for implementing this scheme, including multibeam selection, cooperative beam tracking, multi-beam power allocation and synchronization. The theoretical and numerical results show that the proposed beamspace SU-MIMO can largely improve the achievable rate of the transmission between an MTX and an MRX and, meanwhile, can maintain the connectivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا