ترغب بنشر مسار تعليمي؟ اضغط هنا

The Perturbative Resolvent Method: spectral densities of random matrix ensembles via perturbation theory

98   0   0.0 ( 0 )
 نشر من قبل Pankaj Mehta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple, perturbative approach for calculating spectral densities for random matrix ensembles in the thermodynamic limit we call the Perturbative Resolvent Method (PRM). The PRM is based on constructing a linear system of equations and calculating how the solutions to these equation change in response to a small perturbation using the zero-temperature cavity method. We illustrate the power of the method by providing simple analytic derivations of the Wigner Semi-circle Law for symmetric matrices, the Marchenko-Pastur Law for Wishart matrices, the spectral density for a product Wishart matrix composed of two square matrices, and the Circle and elliptic laws for real random matrices.



قيم البحث

اقرأ أيضاً

Theory of Random Matrix Ensembles have proven to be a useful tool in the study of the statistical distribution of energy or transmission levels of a wide variety of physical systems. We give an overview of certain q-generalizations of the Random Matr ix Ensembles, which were first introduced in connection with the statistical description of disordered quantum conductors.
The fidelity susceptibility measures sensitivity of eigenstates to a change of an external parameter. It has been fruitfully used to pin down quantum phase transitions when applied to ground states (with extensions to thermal states). Here we propose to use the fidelity susceptibility as a useful dimensionless measure for complex quantum systems. We find analytically the fidelity susceptibility distributions for Gaussian orthogonal and unitary universality classes for arbitrary system size. The results are verified by a comparison with numerical data.
By calculating all terms of the high-density expansion of the euclidean random matrix theory (up to second-order in the inverse density) for the vibrational spectrum of a topologically disordered system we show that the low-frequency behavior of the self energy is given by $Sigma(k,z)propto k^2z^{d/2}$ and not $Sigma(k,z)propto k^2z^{(d-2)/2}$, as claimed previously. This implies the presence of Rayleigh scattering and long-time tails of the velocity autocorrelation function of the analogous diffusion problem of the form $Z(t)propto t^{(d+2)/2}$.
173 - Zhengdong Wang , Kuihua Yan 2005
Using operator methods, we generally present the level densities for kinds of random matrix unitary ensembles in weak sense. As a corollary, the limit spectral distributions of random matrices from Gaussian, Laguerre and Jacobi unitary ensembles are recovered. At the same time, we study the perturbation invariability of the level densities of random matrix unitary ensembles. After the weight function associated with the 1-level correlation function is appended a polynomial multiplicative factor, the level density is invariant in the weak sense.
161 - V.E.Kravtsov 2009
This is a course on Random Matrix Theory which includes traditional as well as advanced topics presented with an extensive use of classical logarithmic plasma analogy and that of the quantum systems of one-dimensional interacting fermions with invers e square interaction (Calogero-Sutherland model). Certain non-invariant random matrix ensembles are also considered with the emphasis on the eigenfunction statistics in them. The course can also be viewed as introduction to theory of localization where the (non-invariant) random matrix ensembles play a role of the toy models to illustrate functional methods based on super-vector/super-matrix representations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا