ﻻ يوجد ملخص باللغة العربية
In [S. Biswas et al., Eur. Phys. J. A 55, 159 (2019)] a longitudinal wobbling band was reported in $^{133}$La. The critical experimental proof for this assignment is the E2 dominated linking transitions between the wobbling and normal bands, which are supported by angular distribution and linear polarization measurements. However, severe problems are found in the reported experimental information, indicating that the assignment of wobbling band was not firmly established.
Excited states of $^{133}$La have been investigated to search for the wobbling excitation mode in the low-spin regime. Wobbling bands with $n_omega$ = 0 and 1 are identified along with the interconnecting $Delta I$ = 1, $E2$ transitions, which are re
In [J. T. Matta et al., Phys. Rev. Lett. 114, 082501 (2015)] a transverse wobbling band was reported in $^{135}$Pr. The critical experimental proof for this assignment is the E2 dominated linking transitions between the wobbling and normal bands, whi
The rare phenomenon of nuclear wobbling motion has been investigated for the nucleus $^{187}$Au. A longitudinal wobbling-bands pair has been identified and clearly distinguished from the associated signature-partner band on the basis of angular distr
The $g$-factor and static quadrupole moment for the wobbling mode in the nuclide $^{133}$La are investigated as functions of the spin $I$by employing the particle rotor model. The model can reproduce the available experimental data of $g$-factor and
In [S. Nandi et al., Phys. Rev. Lett. 125, 132501 (2020)] two transverse wobbling bands were reported in $^{183}$Au. The critical experimental proof for this assignment is the E2 dominated linking transitions between the wobbling and normal bands, wh