ﻻ يوجد ملخص باللغة العربية
Moire superlattices are excellent platforms to realize strongly correlated quantum phenomena, such as Mott insulation and superconductivity. In particular, recent research has revealed stripe phases and generalized Wigner crystals at fractional fillings of moire superlattices. But these experiments have not focused on the influence of electronic crystallization on the excitonic and valleytronic properties of the superlattices. Here we report excitonic and valleytronic signatures of correlated states at fractional fillings in a WSe$_2$/WS$_2$ moire superlattice. We observe reflection spectral modulation of three intralayer moire excitons at filling factors $ u$ = 1/3 and 2/3. We also observe luminescence spectral modulation of interlayer trions at around a dozen fractional filling factors, including $ u$ = -3/2, 1/4, 1/3, 2/5, 2/3, 6/7, 5/3. In addition, the valley polarization of interlayer trions is noticeably suppressed at some fractional fillings. These results demonstrate a new regime of light-matter interactions, in which electron crystallization significantly modulates the absorption, emission, and valley dynamics of the excitonic states in a moire superlattice.
Moire superlattices of van der Waals materials, such as twisted graphene and transitional metal dichalcogenides, have recently emerged as a fascinating platform to study strongly correlated states in two dimensions, thanks to the strong electron inte
The flat bands resulting from moire superlattices in magic-angle twisted bilayer graphene (MATBG) and ABC-trilayer graphene aligned with hexagonal boron nitride (ABC-TLG/hBN) have been shown to give rise to fascinating correlated electron phenomena s
The Wigner crystal state, first predicted by Eugene Wigner in 1934, has fascinated condensed matter physicists for nearly 90 years2-14. Studies of two-dimensional (2D) electron gases first revealed signatures of the Wigner crystal in electrical trans
Studies on two-dimensional electron systems in a strong magnetic field first revealed the quantum Hall (QH) effect, a topological state of matter featuring a finite Chern number (C) and chiral edge states. Haldane later theorized that Chern insulator
Magneto-transport measurements on electrons confined to a 57 nm-wide, GaAs quantum well reveal that the correlated electron states at low Landau level fillings ($ u$) display a remarkable dependence on the symmetry of the electron charge distribution