ﻻ يوجد ملخص باللغة العربية
We show the existence of rank 6 Ulrich bundles on a smooth cubic fourfold. First, we construct a simple sheaf E of rank 6 as an elementary modification of an ACM bundle of rank 6 on a smooth cubic fourfold. Such an E appears as an extension of two Lehn-Lehn-Sorger-van Straten sheaves. Then we prove that a general deformation of E(1) becomes Ulrich. In particular, this says that general cubic fourfolds have Ulrich complexity 6.
We show that any polarized K3 surface supports special Ulrich bundles of rank 2.
We assume that $mathcal{E}$ is a rank $r$ Ulrich bundle for $(P^n, mathcal{O}(d))$. The main result of this paper is that $mathcal{E}(i)otimes Omega^{j}(j)$ has natural cohomology for any integers $i in mathbb{Z}$ and $0 leq j leq n$, and every Ulric
We show that the maximal number of planes in a complex smooth cubic fourfold in ${mathbb P}^5$ is $405$, realized by the Fermat cubic only; the maximal number of real planes in a real smooth cubic fourfold is $357$, realized by the so-called Clebsch-
In [1309.1899], Ranestad and Voisin showed, quite surprisingly, that the divisor in the moduli space of cubic fourfolds consisting of cubics apolar to a Veronese surface is not a Noether-Lefschetz divisor. We give an independent proof of this by exhi
We classify the Ulrich vector bundles of arbitrary rank on smooth projective varieties of minimal degree. In the process, we prove the stability of the sheaves of relative differentials on rational scrolls.